Symmetric Forms over Semilocal Rings
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 1, pp. 116-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

The necessary and sufficient conditions for congruence of quadratic forms over a local ring with a principal maximal ideal are considered. Up to this congruence, symmetric matrices over polynomial algebras are enumerated.
Keywords: symmetric forms, projective congruence, normal form, local ring of coefficients
Mots-clés : polynomial algebras.
@article{JSFU_2009_2_1_a10,
     author = {Ol'ga A. Starikova},
     title = {Symmetric {Forms} over {Semilocal} {Rings}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {116--121},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2009_2_1_a10/}
}
TY  - JOUR
AU  - Ol'ga A. Starikova
TI  - Symmetric Forms over Semilocal Rings
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2009
SP  - 116
EP  - 121
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2009_2_1_a10/
LA  - ru
ID  - JSFU_2009_2_1_a10
ER  - 
%0 Journal Article
%A Ol'ga A. Starikova
%T Symmetric Forms over Semilocal Rings
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2009
%P 116-121
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2009_2_1_a10/
%G ru
%F JSFU_2009_2_1_a10
Ol'ga A. Starikova. Symmetric Forms over Semilocal Rings. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 2 (2009) no. 1, pp. 116-121. http://geodesic.mathdoc.fr/item/JSFU_2009_2_1_a10/

[1] V. M. Levchuk, O. A. Starikova, “Kvadratichnye formy proektivnykh prostranstv nad koltsami”, Mat. sb., 197:6 (2006), 97–110 | Zbl

[2] V. M. Levchuk, O. A. Starikova, “A normal form and schemes of quadratic forms”, J. Math. Sci., 152:4 (2008), 558–570 | DOI | MR | Zbl

[3] G. P. Egorychev, E. V. Zima, “Simple Formulae for the Number of Quadrics and Symmetric Forms of Modules Over Local Rings”, Commun. Algebra, 36:4 (2008), 1426–1436 | DOI | MR | Zbl

[4] V. V. Vishnevskii, A. P. Shirokov, V. V. Shurygin, Prostranstva nad algebrami, Kazanskii un-t, Kazan, 1985 | MR