On Essential Self-Adjointness of the Schr\"odinger Operator whose Potential is Strongly Singular at a~Point and on a~Manifold
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 4, pp. 453-459.

Voir la notice de l'article provenant de la source Math-Net.Ru

The essential self-adjointness of the Schrödinger operator with a strongly singular potential on manifolds is established.
Keywords: strongly singular potential, the Schrödinger operator.
@article{JSFU_2008_1_4_a9,
     author = {Marina S. Kosbergenova},
     title = {On {Essential} {Self-Adjointness} of the {Schr\"odinger} {Operator} whose {Potential} is {Strongly} {Singular} at {a~Point} and on {a~Manifold}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {453--459},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a9/}
}
TY  - JOUR
AU  - Marina S. Kosbergenova
TI  - On Essential Self-Adjointness of the Schr\"odinger Operator whose Potential is Strongly Singular at a~Point and on a~Manifold
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2008
SP  - 453
EP  - 459
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a9/
LA  - ru
ID  - JSFU_2008_1_4_a9
ER  - 
%0 Journal Article
%A Marina S. Kosbergenova
%T On Essential Self-Adjointness of the Schr\"odinger Operator whose Potential is Strongly Singular at a~Point and on a~Manifold
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2008
%P 453-459
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a9/
%G ru
%F JSFU_2008_1_4_a9
Marina S. Kosbergenova. On Essential Self-Adjointness of the Schr\"odinger Operator whose Potential is Strongly Singular at a~Point and on a~Manifold. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 4, pp. 453-459. http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a9/

[1] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, T. 2, Mir, M., 1982

[2] M. Murata, “Structure of positive solutions to $-\Delta-V$ in $\mathbb R^N$”, Duke Math. J., 53:4 (1986), 869–943 | DOI | MR | Zbl

[3] V. Felli, M. Schneider, “A note on regularity of solutions to degenerate elliptic equations of Caffarelli–Kohn–Nirenberg type”, Adv. Nonlinear Stud., 3:4 (2003), 431–443 | MR | Zbl

[4] V. Felli, E. M. Marchini, S. Terracini, On Schrodinger operators with multipolar inverse-square potentials, , 2006 arXiv: math/0602209v6[math.AP] | MR