On Essential Self-Adjointness of the Schrödinger Operator whose Potential is Strongly Singular at a Point and on a Manifold
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 4, pp. 453-459
Cet article a éte moissonné depuis la source Math-Net.Ru
The essential self-adjointness of the Schrödinger operator with a strongly singular potential on manifolds is established.
Keywords:
strongly singular potential, the Schrödinger operator.
@article{JSFU_2008_1_4_a9,
author = {Marina S. Kosbergenova},
title = {On {Essential} {Self-Adjointness} of the {Schr\"odinger} {Operator} whose {Potential} is {Strongly} {Singular} at {a~Point} and on {a~Manifold}},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {453--459},
year = {2008},
volume = {1},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a9/}
}
TY - JOUR AU - Marina S. Kosbergenova TI - On Essential Self-Adjointness of the Schrödinger Operator whose Potential is Strongly Singular at a Point and on a Manifold JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2008 SP - 453 EP - 459 VL - 1 IS - 4 UR - http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a9/ LA - ru ID - JSFU_2008_1_4_a9 ER -
%0 Journal Article %A Marina S. Kosbergenova %T On Essential Self-Adjointness of the Schrödinger Operator whose Potential is Strongly Singular at a Point and on a Manifold %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2008 %P 453-459 %V 1 %N 4 %U http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a9/ %G ru %F JSFU_2008_1_4_a9
Marina S. Kosbergenova. On Essential Self-Adjointness of the Schrödinger Operator whose Potential is Strongly Singular at a Point and on a Manifold. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 4, pp. 453-459. http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a9/
[1] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, T. 2, Mir, M., 1982
[2] M. Murata, “Structure of positive solutions to $-\Delta-V$ in $\mathbb R^N$”, Duke Math. J., 53:4 (1986), 869–943 | DOI | MR | Zbl
[3] V. Felli, M. Schneider, “A note on regularity of solutions to degenerate elliptic equations of Caffarelli–Kohn–Nirenberg type”, Adv. Nonlinear Stud., 3:4 (2003), 431–443 | MR | Zbl
[4] V. Felli, E. M. Marchini, S. Terracini, On Schrodinger operators with multipolar inverse-square potentials, , 2006 arXiv: math/0602209v6[math.AP] | MR