Symmetry Analysis of Equations for Convection in Binary Mixture
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 4, pp. 410-431.

Voir la notice de l'article provenant de la source Math-Net.Ru

The differential equations describing convection in binary mixture with Soret and Dufour effects are considered. The symmetry classification of these equations with respect to the constant parameters is made. It is shown that a generator producing equivalence transformations of constants is defined accurately up to a factor arbitrarily depending on these constants. The equivalence group admitted by the governing equations is calculated. Using this group, a transformation connecting the systems with and without Soret and Dufour terms is derived. In pure Soret case, it reduces to a linear change of temperature and concentration. The presence of Dufour effect requires an additional change of thermal diffusivity and diffusion coefficient. A scheme for reducing an initial and boundary value problem for Soret–Dufour equations to a problem for the system without these effects is proposed.
Keywords: Lie symmetry group, binary mixture, Soret and Dufour effects.
Mots-clés : equivalence transformation, convection
@article{JSFU_2008_1_4_a5,
     author = {Ilya I. Ryzhkov},
     title = {Symmetry {Analysis} of {Equations} for {Convection} in {Binary} {Mixture}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {410--431},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a5/}
}
TY  - JOUR
AU  - Ilya I. Ryzhkov
TI  - Symmetry Analysis of Equations for Convection in Binary Mixture
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2008
SP  - 410
EP  - 431
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a5/
LA  - en
ID  - JSFU_2008_1_4_a5
ER  - 
%0 Journal Article
%A Ilya I. Ryzhkov
%T Symmetry Analysis of Equations for Convection in Binary Mixture
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2008
%P 410-431
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a5/
%G en
%F JSFU_2008_1_4_a5
Ilya I. Ryzhkov. Symmetry Analysis of Equations for Convection in Binary Mixture. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 4, pp. 410-431. http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a5/

[1] L. V. Ovsyannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982 | MR | Zbl

[2] G. Z. Gershuni, E. M. Zhukhovitskii, Convective Stability of Incompressible Fluids, Keter, Jerusalem, 1976

[3] G. Z. Gershuni, E. M. Zhukhovitskii, A. A. Nepomnyashchy, Stability of Convective Flows, Nauka, Moscow, 1989 (Russian) | MR | Zbl

[4] J. K. Platten, J. C. Legros, Convection in Liquids, Springer, Berlin, 1984 | Zbl

[5] L. D. Landau, E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford, 1987 | MR | Zbl

[6] O. N. Goncharova, “Group Classification of the Free Convection Equations”, Continuum dynamics, Collection of papers, No 79, Novosibirsk, 1987, 22–35 (Russian) | MR | Zbl

[7] V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, A. A. Rodionov, Applications of Group-Theoretical Methods in Hydrodynamics, Kluwer Acad. Publ., Dordrecht, 1998 | MR | Zbl

[8] V. L. Katkov, “Exact Solutions of Certain Convection Problems”, J. Appl. Math. Mech., 32:3 (1968), 489–495 | DOI

[9] V. K. Andreev, I. I. Ryzhkov, “Symmetry Classification and Exact Solutions of the Thermal Diffusion Equations”, Differential equations, 41:4 (2005), 508–517 | DOI | MR | Zbl

[10] I. I. Ryzhkov, “On the Normalizers of Subalgebras in an Infinite Lie Algebra”, Commun. Nonlinear Sci. Numerical Simulation, 11:2 (2006), 172–185 | DOI | MR | Zbl

[11] I. I. Ryzhkov, “Symmetry Analysis of the Thermal Diffusion Equations in the Planar Case”, Proceedings of 10th International Conference on Modern Group Analysis, Larnaca, Cyprus, 2005, 182–189

[12] I. I. Ryzhkov, “Invariant Solutions of the Thermal Diffusion Equations for a Binary Mixture in the Case of Plane Motion”, J. Appl. Mech. Tech. Phys., 47:1 (2006), 79–90 | DOI | MR | Zbl

[13] I. I. Ryzhkov, “On Double Diffusive Convection with Soret Effect in a Vertical Layer between Co-Axial Cylinders”, Physica D Nonlinear phenomena, 215 (2006), 191–200 | DOI | MR | Zbl

[14] A. F. Sidorov, V. P. Shapeev, V. P. Yanenko, The Method of Differential Connections and its Applications to Gas Dynamics, Nauka, Novosibirsk, 1984 (Russian) | Zbl

[15] N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Reidel, Dordrecht, 1985 | MR | Zbl

[16] N. H. Ibragimov, G. Unal, “Lie Groups in Turbulence”, Lie Groups and their Applications, 1:2 (1994), 98–103 | MR | Zbl

[17] V. F. Kovalev, V. V. Pustovalov, “Lie Algebra of Renormalization Group Admitted by Initial Value Problem for Burgers Equation”, Lie Groups and their Applications, 1:2 (1994), 104–120 | MR | Zbl

[18] S. V. Meleshko, “Generalization of the Equivalence Transformations”, Nonlinear mathematical physics, 3:1–2 (1996), 170–174 | DOI | MR | Zbl

[19] E. Knobloch, “Convection in Binary Fluids”, Physics of Fluids, 23:9 (1980), 1918–1920 | DOI | MR

[20] S. Hollinger, M. Lüke, “Influence of the Dufour Effect on Convection in Binary Gas Mixtures”, Physical review E, 52:1 (1980), 642–656 | DOI