Generalized Convolutions for the Fourier Integral Transforms and Applications
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 4, pp. 371-379

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper provides some generalized convolutions for the Fourier integral transforms and treats the applications. Namely, there are six generalized convolutions with weight-function for the Fourier integral transforms. As for applications, the normed ring structures on $L^1(\mathbb R^d)$ are constructed, and the explicit solution in $L^1(\mathbb R^d)$ of the integral equations with the mixed Toeplitz–Hankel kernel are obtained.
Keywords: generalized convolution, normed ring, integral equation of convolution type.
@article{JSFU_2008_1_4_a1,
     author = {Bui Thi Giang and Nguyen Minh Tuan},
     title = {Generalized {Convolutions} for the {Fourier} {Integral} {Transforms} and {Applications}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {371--379},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a1/}
}
TY  - JOUR
AU  - Bui Thi Giang
AU  - Nguyen Minh Tuan
TI  - Generalized Convolutions for the Fourier Integral Transforms and Applications
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2008
SP  - 371
EP  - 379
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a1/
LA  - en
ID  - JSFU_2008_1_4_a1
ER  - 
%0 Journal Article
%A Bui Thi Giang
%A Nguyen Minh Tuan
%T Generalized Convolutions for the Fourier Integral Transforms and Applications
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2008
%P 371-379
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a1/
%G en
%F JSFU_2008_1_4_a1
Bui Thi Giang; Nguyen Minh Tuan. Generalized Convolutions for the Fourier Integral Transforms and Applications. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 4, pp. 371-379. http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a1/