The Joint Motion of Two Binary Mixtures in a~Flat Layer
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 4, pp. 349-370.

Voir la notice de l'article provenant de la source Math-Net.Ru

The invariant solution of the equations of thermodiffusional motion is investigated. This solution describes the motion of two immiscible incompressible binary mixtures with a common flat interface under the action of pressure gradient and thermocapillary forces. The stationary flow of such system is found. If the pressure gradient in one of the mixtures tends to zero sufficiently fast, then the motion of mixtures is slowed down by the viscous friction. On the other hand, if there exists a finite limit of pressure gradient when time tends to infinity, then the solution tends to the stationary state.
Keywords: flat layer
Mots-clés : thermodiffusional motion, invariant solution.
@article{JSFU_2008_1_4_a0,
     author = {Viktor K. Andreev},
     title = {The {Joint} {Motion} of {Two} {Binary} {Mixtures} in {a~Flat} {Layer}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {349--370},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a0/}
}
TY  - JOUR
AU  - Viktor K. Andreev
TI  - The Joint Motion of Two Binary Mixtures in a~Flat Layer
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2008
SP  - 349
EP  - 370
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a0/
LA  - en
ID  - JSFU_2008_1_4_a0
ER  - 
%0 Journal Article
%A Viktor K. Andreev
%T The Joint Motion of Two Binary Mixtures in a~Flat Layer
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2008
%P 349-370
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a0/
%G en
%F JSFU_2008_1_4_a0
Viktor K. Andreev. The Joint Motion of Two Binary Mixtures in a~Flat Layer. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 4, pp. 349-370. http://geodesic.mathdoc.fr/item/JSFU_2008_1_4_a0/

[1] V. K. Andreev, V. E. Zakhvataev, E. A. Ryabitskii, Thermocapillary Instability, Nauka, Novosibirsk, 2000 (Russian) | MR | Zbl

[2] V. K. Andreev, “On the Invariant Solutions of the Thermal Diffusion Equations”, Proceedings of III International Conference “Symmetry and differential equations”, Institute of Computational Modelling SB RAS, Krasnoyarsk, 2002, 13–17 (Russian)

[3] L. G. Loytsyansky, Fluid Mechanics, Nauka, Moscow, 1973 (Russian)

[4] G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge Univ. Press, Cambridge, 1967 | MR | Zbl

[5] V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, A. A. Rodionov, Application of Group-Theoretical Methods in Hydordynamics, Kluwer Acad. Publ., Dordrecht, 1998 | MR | Zbl

[6] M. A. Lavrentyev, B. V. Shabat, Methods of the Theory of Functions of a Complex Variable, Nauka, Moscow, 1973 (Russian)

[7] M. V. Fedoryk, The Saddlepoint Method, Nauka, Moscow, 1977 (Russian)

[8] O. A. Ladyzhenskaya, The mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969 | MR | Zbl