The Problem of Identification of Coefficients by the Derivatives with Respect to Time and a~Spatial Variable
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 3, pp. 308-317

Voir la notice de l'article provenant de la source Math-Net.Ru

The unique solvability of the problem of identification of coefficients by the derivatives with respect to time and a spatial variable of the parabolic equation with Cauchy data and overdetermination conditions given on two various hyperplanes is proved in this work.
Keywords: problem of the identification of coefficients, inverse problem, equations in individual derivatives, method of weak approximation.
@article{JSFU_2008_1_3_a9,
     author = {Svetlana V. Polyntseva},
     title = {The {Problem} of {Identification} of {Coefficients} by the {Derivatives} with {Respect} to {Time} and {a~Spatial} {Variable}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {308--317},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a9/}
}
TY  - JOUR
AU  - Svetlana V. Polyntseva
TI  - The Problem of Identification of Coefficients by the Derivatives with Respect to Time and a~Spatial Variable
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2008
SP  - 308
EP  - 317
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a9/
LA  - ru
ID  - JSFU_2008_1_3_a9
ER  - 
%0 Journal Article
%A Svetlana V. Polyntseva
%T The Problem of Identification of Coefficients by the Derivatives with Respect to Time and a~Spatial Variable
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2008
%P 308-317
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a9/
%G ru
%F JSFU_2008_1_3_a9
Svetlana V. Polyntseva. The Problem of Identification of Coefficients by the Derivatives with Respect to Time and a~Spatial Variable. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 3, pp. 308-317. http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a9/