The Problem of Identification of Coefficients by the Derivatives with Respect to Time and a~Spatial Variable
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 3, pp. 308-317.

Voir la notice de l'article provenant de la source Math-Net.Ru

The unique solvability of the problem of identification of coefficients by the derivatives with respect to time and a spatial variable of the parabolic equation with Cauchy data and overdetermination conditions given on two various hyperplanes is proved in this work.
Keywords: problem of the identification of coefficients, inverse problem, equations in individual derivatives, method of weak approximation.
@article{JSFU_2008_1_3_a9,
     author = {Svetlana V. Polyntseva},
     title = {The {Problem} of {Identification} of {Coefficients} by the {Derivatives} with {Respect} to {Time} and {a~Spatial} {Variable}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {308--317},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a9/}
}
TY  - JOUR
AU  - Svetlana V. Polyntseva
TI  - The Problem of Identification of Coefficients by the Derivatives with Respect to Time and a~Spatial Variable
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2008
SP  - 308
EP  - 317
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a9/
LA  - ru
ID  - JSFU_2008_1_3_a9
ER  - 
%0 Journal Article
%A Svetlana V. Polyntseva
%T The Problem of Identification of Coefficients by the Derivatives with Respect to Time and a~Spatial Variable
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2008
%P 308-317
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a9/
%G ru
%F JSFU_2008_1_3_a9
Svetlana V. Polyntseva. The Problem of Identification of Coefficients by the Derivatives with Respect to Time and a~Spatial Variable. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 3, pp. 308-317. http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a9/

[1] Yu. Ya. Belov, S. A. Kantor, Metod slaboi approksimatsii, KrasGU, Krasnoyarsk, 1999

[2] Yu. Ya. Belov, I. V. Frolenkov, “O zadache identifikatsii koeffitsienta pri proizvodnoi po vremeni v polulineinom parabolicheskom uravnenii”, Vychislitelnye tekhnologii, 9 (2004), Vestnik KazNU, 42:3 (2004), Sovmestnyi vypusk, chast I, Novosibirsk, Almaty, 281–288

[3] Yu. Ya. Belov, E. G. Savateev, “Ob odnoi obratnoi zadache dlya parabolicheskogo uravneniya s neizvestnym koeffitsientom pri proizvodnoi po vremeni”, Dokl. RAN, 334:5 (1991), 800–804 | MR

[4] Yu. Ya. Belov, S. V. Polyntseva, “O zadache identifikatsii trekh koeffitsientov mnogomernogo parabolicheskogo uravneniya”, Vychislitelnye tekhnologii, 9 (2004), Vestnik KazNU, 42:3 (2004), Sovmestnyi vypusk, chast I, Novosibirsk, Almaty, 273–280

[5] Yu. Ya. Belov, S. V. Polyntseva, “Ob odnoi zadache identifikatsii dvukh koeffitsientov mnogomernogo parabolicheskogo uravneniya”, Dokl. RAN, 396:5 (2004), 583–586 | MR | Zbl

[6] S. V. Polyntseva, “Zadachi identifikatsii trekh i chetyrekh koeffitsientov mnogomernogo parabolicheskogo uravneniya”, Neklassicheskie uravneniya matematicheskoi fiziki, Trudy mezhdunarodnoi konferentsii “Differentsialnye uravneniya, teoriya funktsii i prilozheniya”, Institut matematiki SO RAN, Novosibirsk, 2007, 221–231

[7] Yu. Ya. Belov, Inverse Problems for Partial Differential Equations, VSP, Utrecht–Boston–Koln–Tokyo, 2002 | MR | Zbl