Modeling of a~Deformation Localization in a~Medium with Different Strengths
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 3, pp. 272-283.

Voir la notice de l'article provenant de la source Math-Net.Ru

A special mathematical model which is a generalization of a classical model of the elasticity theory is used for the analysis of directions of a deformation localization in samples made of solid material with different strengths. Numerical solution of the problems is carried out by means of iterative process. At each step of this process the equations of the elasticity theory with initial stresses are solved by means of the finite-elements method.
Keywords: deformations localization, mathematical model, elasticity theory.
@article{JSFU_2008_1_3_a5,
     author = {Olga I. Kuzovatova and Vladimir M. Sadovsky},
     title = {Modeling of {a~Deformation} {Localization} in {a~Medium} with {Different} {Strengths}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {272--283},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a5/}
}
TY  - JOUR
AU  - Olga I. Kuzovatova
AU  - Vladimir M. Sadovsky
TI  - Modeling of a~Deformation Localization in a~Medium with Different Strengths
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2008
SP  - 272
EP  - 283
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a5/
LA  - ru
ID  - JSFU_2008_1_3_a5
ER  - 
%0 Journal Article
%A Olga I. Kuzovatova
%A Vladimir M. Sadovsky
%T Modeling of a~Deformation Localization in a~Medium with Different Strengths
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2008
%P 272-283
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a5/
%G ru
%F JSFU_2008_1_3_a5
Olga I. Kuzovatova; Vladimir M. Sadovsky. Modeling of a~Deformation Localization in a~Medium with Different Strengths. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 3, pp. 272-283. http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a5/

[1] V. P. Myasnikov, V. M. Sadovskii, “Variatsionnye printsipy teorii predelnogo ravnovesiya raznoprochnykh sred”, Prikladnaya matematika i mekhanika, 68:3 (2004), 487–498 | MR | Zbl

[2] O. V. Sadovskaya, V. M. Sadovskii, Matematicheskoe modelirovanie v zadachakh mekhaniki sypuchikh sred, Fizmatlit, M., 2008 | Zbl

[3] D. Drukker, V. Prager, “Mekhanika gruntov i plasticheskii analiz ili predelnoe proektirovanie”, Opredelyayuschie zakony mekhaniki gruntov, Ser. Novoe v zarubezhnoi nauke, 2, Mir, M., 1975, 166–177

[4] G. I. Marchuk, V. I. Agoshkov, Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR | Zbl

[5] G. I. Marchuk, Metody vychislitelnoi matematiki, Nauka, M., 1980 | MR