Classes of Conjugate Involutions of Symplectic Groups over Fields of Even Order and Related Questions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 3, pp. 324-328
Voir la notice de l'article provenant de la source Math-Net.Ru
We use an analogue of the Suzuki form in $PSL(n,q)$ in order to find representatives of conjugate involution classes of symplectic groups $Sp(2n,q)$ over fields of any even order. Let $\tau$ be an involution of a group $G$ and $ccw(G,\tau)$ denote the number of all conjugate and commutative involutions for $\tau$. We establish an uppen bound for this number in the case of $Sp(2n,q)$.
Keywords:
symplectic group, involution.
@article{JSFU_2008_1_3_a11,
author = {Oksana V. Radchenko},
title = {Classes of {Conjugate} {Involutions} of {Symplectic} {Groups} over {Fields} of {Even} {Order} and {Related} {Questions}},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {324--328},
publisher = {mathdoc},
volume = {1},
number = {3},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a11/}
}
TY - JOUR AU - Oksana V. Radchenko TI - Classes of Conjugate Involutions of Symplectic Groups over Fields of Even Order and Related Questions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2008 SP - 324 EP - 328 VL - 1 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a11/ LA - ru ID - JSFU_2008_1_3_a11 ER -
%0 Journal Article %A Oksana V. Radchenko %T Classes of Conjugate Involutions of Symplectic Groups over Fields of Even Order and Related Questions %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2008 %P 324-328 %V 1 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a11/ %G ru %F JSFU_2008_1_3_a11
Oksana V. Radchenko. Classes of Conjugate Involutions of Symplectic Groups over Fields of Even Order and Related Questions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 3, pp. 324-328. http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a11/