Classes of Conjugate Involutions of Symplectic Groups over Fields of Even Order and Related Questions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 3, pp. 324-328

Voir la notice de l'article provenant de la source Math-Net.Ru

We use an analogue of the Suzuki form in $PSL(n,q)$ in order to find representatives of conjugate involution classes of symplectic groups $Sp(2n,q)$ over fields of any even order. Let $\tau$ be an involution of a group $G$ and $ccw(G,\tau)$ denote the number of all conjugate and commutative involutions for $\tau$. We establish an uppen bound for this number in the case of $Sp(2n,q)$.
Keywords: symplectic group, involution.
@article{JSFU_2008_1_3_a11,
     author = {Oksana V. Radchenko},
     title = {Classes of {Conjugate} {Involutions} of {Symplectic} {Groups} over {Fields} of {Even} {Order} and {Related} {Questions}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {324--328},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a11/}
}
TY  - JOUR
AU  - Oksana V. Radchenko
TI  - Classes of Conjugate Involutions of Symplectic Groups over Fields of Even Order and Related Questions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2008
SP  - 324
EP  - 328
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a11/
LA  - ru
ID  - JSFU_2008_1_3_a11
ER  - 
%0 Journal Article
%A Oksana V. Radchenko
%T Classes of Conjugate Involutions of Symplectic Groups over Fields of Even Order and Related Questions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2008
%P 324-328
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a11/
%G ru
%F JSFU_2008_1_3_a11
Oksana V. Radchenko. Classes of Conjugate Involutions of Symplectic Groups over Fields of Even Order and Related Questions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 3, pp. 324-328. http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a11/