Identification of a~Speciation Model by Methods of Optimal Control Theory
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 3, pp. 231-235

Voir la notice de l'article provenant de la source Math-Net.Ru

The model of sympatric speciation is identified by means of optimal control theory. For the corresponding integro-differential optimal control problem a necessary optimality condition is deduced in the form of the linearised maximum principle. This condition allows concretizing gradient method of solution for control problem of speciation model.
Keywords: controlled integro-differential system, necessary optimality conditions, the model of speciation, gradient method of solution.
@article{JSFU_2008_1_3_a0,
     author = {Anna V. Bukina},
     title = {Identification of {a~Speciation} {Model} by {Methods} of {Optimal} {Control} {Theory}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {231--235},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a0/}
}
TY  - JOUR
AU  - Anna V. Bukina
TI  - Identification of a~Speciation Model by Methods of Optimal Control Theory
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2008
SP  - 231
EP  - 235
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a0/
LA  - ru
ID  - JSFU_2008_1_3_a0
ER  - 
%0 Journal Article
%A Anna V. Bukina
%T Identification of a~Speciation Model by Methods of Optimal Control Theory
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2008
%P 231-235
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a0/
%G ru
%F JSFU_2008_1_3_a0
Anna V. Bukina. Identification of a~Speciation Model by Methods of Optimal Control Theory. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 3, pp. 231-235. http://geodesic.mathdoc.fr/item/JSFU_2008_1_3_a0/