Comparative Analysis of Two Models of the Two-Layer Fluid Motion by means of Ekman's Approximation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 2, pp. 197-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two Ekman's type models for stationary wind-driven motion of two-layer fluid are proposed. Upper and lower layers are homogeneous with different densities. The analytic solutions in the two-dimensional and three-dimensional cases are found for this models. For the 2-D case it is assumed that the bottom of the water basin is not flat and the vertical turbulent exchange coefficients in upper and lower layers depend on the depth. For the 3-D case the vertical turbulent exchange coefficients are constant in each layer and the bottom of the water basin is flat. The obtained solutions could be useful for the evaluation of the boundary location between layers and as a test in the analysis of computational algorithms which are applied for solving problem of the wind current in a two-layer liquid.
Keywords: analytical solution, stationary wind-driven motion, Ekman's approximation, two-layer liquid.
@article{JSFU_2008_1_2_a7,
     author = {Lidiya A. Kompaniets and Tat'yana V. Yakubailik and Kirill Yu. Gurevich and Lyudmila V. Gavrilova and Ekaterina A. Kirilyuk},
     title = {Comparative {Analysis} of {Two} {Models} of the {Two-Layer} {Fluid} {Motion} by means of {Ekman's} {Approximation}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {197--209},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a7/}
}
TY  - JOUR
AU  - Lidiya A. Kompaniets
AU  - Tat'yana V. Yakubailik
AU  - Kirill Yu. Gurevich
AU  - Lyudmila V. Gavrilova
AU  - Ekaterina A. Kirilyuk
TI  - Comparative Analysis of Two Models of the Two-Layer Fluid Motion by means of Ekman's Approximation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2008
SP  - 197
EP  - 209
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a7/
LA  - ru
ID  - JSFU_2008_1_2_a7
ER  - 
%0 Journal Article
%A Lidiya A. Kompaniets
%A Tat'yana V. Yakubailik
%A Kirill Yu. Gurevich
%A Lyudmila V. Gavrilova
%A Ekaterina A. Kirilyuk
%T Comparative Analysis of Two Models of the Two-Layer Fluid Motion by means of Ekman's Approximation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2008
%P 197-209
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a7/
%G ru
%F JSFU_2008_1_2_a7
Lidiya A. Kompaniets; Tat'yana V. Yakubailik; Kirill Yu. Gurevich; Lyudmila V. Gavrilova; Ekaterina A. Kirilyuk. Comparative Analysis of Two Models of the Two-Layer Fluid Motion by means of Ekman's Approximation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 2, pp. 197-209. http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a7/

[1] T. V. Gapeeva, K. Yu. Gurevich, L. A. Kompaniets, “Analiticheskoe reshenie odnoi modeli dvizheniya dvukhsloinoi zhidkosti (3-d sluchai)”, Vestnik KrasGU. Fiziko-matematicheskie nauki, 2006, no. 4, 43–49

[2] Z. N. Dobrovolskaya, G. P. Epikhov, P. P. Koryavov, N. N. Moiseev, “Matematicheskie modeli dlya rascheta dinamiki i kachestva slozhnykh vodnykh sistem”, Vodnye resursy, 1981, no. 3, 33–51

[3] Z. N. Dobrovolskaya, A. I. Simonov, “Matematicheskoe modelirovanie techenii v stratifitsirovannom vodoeme”, Modelirovanie i eksperimentalnye issledovaniya gidrologicheskikh protsessov v ozerakh, Nauka, Leningradskoe otdelenie, L., 1986, 6–10

[4] P. P. Koryavov, Mnogosloinaya model ekmanovskogo tipa dlya rascheta vetrovykh techenii, Soobscheniya po prikladnoi matematike, Vychislitelnyi tsentr AN SSSR, M., 1991, 26 pp.

[5] G. I. Marchuk, V. P. Kochergin, V. I. Klimuk, V. A. Sukhorukov, Dinamika odnorodnogo sloya okeana, VTs SO AN SSSR, Novosibirsk, 1976, 17 pp.

[6] V. W. Ekman, “On the influence of the Earth rotation on ocean currents”, Arkiv Mat., Astron., Fysik., 2:11 (1905), 1–52

[7] P. Welander, “Wind action on a shallow sea: some generalisations of Ekman's theory”, Tellus, 9 (1957), 45–52 | MR

[8] P. Welander, “Wind-driven circulation in one- and two-layer oceans of variable depth”, Tellus XX, 1 (1968), 1–16

[9] A. L. Chikin, “Postroenie i chislennoe 3-D modeli gidrodinamiki Azovskogo morya”, Vychislitelnye tekhnologii, 6 (2001), 686–691

[10] V. Yu. Lyapidevskii, V. M. Teshukov, Matematicheskie modeli rasprostraneniya dlinnykh voln v neodnorodnoi zhidkosti, SO RAN, Novosibirsk, 2000, 420 pp.

[11] L. A. Kompaniets, T. V. Yakubailik, “Analiticheskoe reshenie odnoi modeli vetrovogo dvizheniya dvukhsloinoi zhidkosti”, Vychislitelnye tekhnologii, 9 (2004), 372–383

[12] G. V. Eremeeva, Yu. G. Filippov, G. Ya. Shkudova, “Nekotorye osobennosti tsirkulyatsii v raionakh otmelykh i priglubykh shelfov glubokikh morei”, Gidrodinamicheskie metody modelirovaniya protsessov na moryakh SSSR, Gidrometeoizdat, M., 1987, 47–55

[13] K. Hutter, G. Bauer, Y. Wang, P. Güting, “Forced motion response in enclosed lakes”, Physical Processes in Lakes and Oceans, Coastal and Estuarine Studies, 54 (1998), 137–166