A Generalized Model of Nonlinear Operators of Volterra Type and Lyapunov Functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 2, pp. 188-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

In some problems of population genetics we deal with studying asymptotic behavior of the trajectory of nonlinear mappings of a simplex into itself. The present paper is devoted to investigation of homeomorphisms of such mappings and asymptotic behavior. Such a homeomorphism allows us to determine the pre-history of a biological system.
Keywords: nonlinear operators, asymptotical behavior, Lyapunov function.
@article{JSFU_2008_1_2_a6,
     author = {Rasul N. Ganikhodzhaev and Mansoor X. Saburov},
     title = {A {Generalized} {Model} of {Nonlinear} {Operators} of {Volterra} {Type} and {Lyapunov} {Functions}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {188--196},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a6/}
}
TY  - JOUR
AU  - Rasul N. Ganikhodzhaev
AU  - Mansoor X. Saburov
TI  - A Generalized Model of Nonlinear Operators of Volterra Type and Lyapunov Functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2008
SP  - 188
EP  - 196
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a6/
LA  - ru
ID  - JSFU_2008_1_2_a6
ER  - 
%0 Journal Article
%A Rasul N. Ganikhodzhaev
%A Mansoor X. Saburov
%T A Generalized Model of Nonlinear Operators of Volterra Type and Lyapunov Functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2008
%P 188-196
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a6/
%G ru
%F JSFU_2008_1_2_a6
Rasul N. Ganikhodzhaev; Mansoor X. Saburov. A Generalized Model of Nonlinear Operators of Volterra Type and Lyapunov Functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 2, pp. 188-196. http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a6/

[1] R. N. Ganikhodzhaev, “Kvadratichnye stokhasticheskie operatory, funktsii Lyapunova i turniry”, Mat. sb., 183:8 (1992), 119–140 | MR | Zbl

[2] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[3] E. Spener, Algebraicheskaya topologiya, Mir, M., 1971 | MR