Studies on Systems of Six Lines on a~Projective Plane over a~Prime Field
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 2, pp. 140-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple six-line arrangement on a projective plane is obtained by a system of six labelled lines $L_1,L_2,\ldots,L_6$ with the conditions; (1) they are mutually different and (2) no three of them intersect at a point. We add the condition that (3) there is no conic tangent to all the lines. The main subject of this paper is to treat such arrangements on a projective plane over a finite prime field.
Keywords: projective plane, finite prime field, quadratic residue.
@article{JSFU_2008_1_2_a3,
     author = {Jiro Sekiguchi},
     title = {Studies on {Systems} of {Six} {Lines} on {a~Projective} {Plane} over {a~Prime} {Field}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {140--151},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a3/}
}
TY  - JOUR
AU  - Jiro Sekiguchi
TI  - Studies on Systems of Six Lines on a~Projective Plane over a~Prime Field
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2008
SP  - 140
EP  - 151
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a3/
LA  - en
ID  - JSFU_2008_1_2_a3
ER  - 
%0 Journal Article
%A Jiro Sekiguchi
%T Studies on Systems of Six Lines on a~Projective Plane over a~Prime Field
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2008
%P 140-151
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a3/
%G en
%F JSFU_2008_1_2_a3
Jiro Sekiguchi. Studies on Systems of Six Lines on a~Projective Plane over a~Prime Field. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 2, pp. 140-151. http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a3/

[1] B. Grünbaum, Convex Polytopes, Interscience Publ. John Willey Sons, New York, 1967 | MR | Zbl

[2] J. Sekiguchi, M. Yoshida, “$W(E_6)$-action on the configuration space of 6 points of the real projective plane”, Kyushu J. Math., 51 (1997), 297–354 | DOI | MR | Zbl

[3] I. Naruki, “Cross ratio variety as a moduli space of cubic surfaces”, Proc. London Math. Soc., 45 (1982), 1–30 | DOI | MR | Zbl