Studies on Systems of Six Lines on a Projective Plane over a Prime Field
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 2, pp. 140-151
Cet article a éte moissonné depuis la source Math-Net.Ru
A simple six-line arrangement on a projective plane is obtained by a system of six labelled lines $L_1,L_2,\ldots,L_6$ with the conditions; (1) they are mutually different and (2) no three of them intersect at a point. We add the condition that (3) there is no conic tangent to all the lines. The main subject of this paper is to treat such arrangements on a projective plane over a finite prime field.
Keywords:
projective plane, finite prime field, quadratic residue.
@article{JSFU_2008_1_2_a3,
author = {Jiro Sekiguchi},
title = {Studies on {Systems} of {Six} {Lines} on {a~Projective} {Plane} over {a~Prime} {Field}},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {140--151},
year = {2008},
volume = {1},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a3/}
}
TY - JOUR AU - Jiro Sekiguchi TI - Studies on Systems of Six Lines on a Projective Plane over a Prime Field JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2008 SP - 140 EP - 151 VL - 1 IS - 2 UR - http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a3/ LA - en ID - JSFU_2008_1_2_a3 ER -
Jiro Sekiguchi. Studies on Systems of Six Lines on a Projective Plane over a Prime Field. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 2, pp. 140-151. http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a3/
[1] B. Grünbaum, Convex Polytopes, Interscience Publ. John Willey Sons, New York, 1967 | MR | Zbl
[2] J. Sekiguchi, M. Yoshida, “$W(E_6)$-action on the configuration space of 6 points of the real projective plane”, Kyushu J. Math., 51 (1997), 297–354 | DOI | MR | Zbl
[3] I. Naruki, “Cross ratio variety as a moduli space of cubic surfaces”, Proc. London Math. Soc., 45 (1982), 1–30 | DOI | MR | Zbl