On Generation of the Group $PSL_n(\mathbb Z+i\mathbb Z)$ by Three Involutions, Two of Which Commute
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 2, pp. 133-139

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the projective special linear group $PSL_n(\mathbb Z+i\mathbb Z)$, $n\geqslant8,$ over Gaussian integers $\mathbb Z+i\mathbb Z$ is generated by three involutions, two of which commute.
Keywords: Gaussian intergers, special linear group, generating elements.
@article{JSFU_2008_1_2_a2,
     author = {Denis V. Levchuk and Yakov N. Nuzhin},
     title = {On {Generation} of the {Group} $PSL_n(\mathbb Z+i\mathbb Z)$ by {Three} {Involutions,} {Two} of {Which} {Commute}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {133--139},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a2/}
}
TY  - JOUR
AU  - Denis V. Levchuk
AU  - Yakov N. Nuzhin
TI  - On Generation of the Group $PSL_n(\mathbb Z+i\mathbb Z)$ by Three Involutions, Two of Which Commute
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2008
SP  - 133
EP  - 139
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a2/
LA  - en
ID  - JSFU_2008_1_2_a2
ER  - 
%0 Journal Article
%A Denis V. Levchuk
%A Yakov N. Nuzhin
%T On Generation of the Group $PSL_n(\mathbb Z+i\mathbb Z)$ by Three Involutions, Two of Which Commute
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2008
%P 133-139
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a2/
%G en
%F JSFU_2008_1_2_a2
Denis V. Levchuk; Yakov N. Nuzhin. On Generation of the Group $PSL_n(\mathbb Z+i\mathbb Z)$ by Three Involutions, Two of Which Commute. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 2, pp. 133-139. http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a2/