Integral Representations and Volume Forms on Hirzebruch Surfaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 2, pp. 125-132

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a class of integral representations for holomorphic functions in a polyhedron in $\mathbb C^4$, associated with Hirzebruch surfaces. The kernels of the integral representations are closed differential forms in $\mathbb C^4$ associated with volume forms on Hirzebruch surfaces.
Keywords: integral representation, toric variety.
Mots-clés : Hirzebruch surface
@article{JSFU_2008_1_2_a1,
     author = {Alexey A. Kytmanov},
     title = {Integral {Representations} and {Volume} {Forms} on {Hirzebruch} {Surfaces}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {125--132},
     publisher = {mathdoc},
     volume = {1},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a1/}
}
TY  - JOUR
AU  - Alexey A. Kytmanov
TI  - Integral Representations and Volume Forms on Hirzebruch Surfaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2008
SP  - 125
EP  - 132
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a1/
LA  - en
ID  - JSFU_2008_1_2_a1
ER  - 
%0 Journal Article
%A Alexey A. Kytmanov
%T Integral Representations and Volume Forms on Hirzebruch Surfaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2008
%P 125-132
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a1/
%G en
%F JSFU_2008_1_2_a1
Alexey A. Kytmanov. Integral Representations and Volume Forms on Hirzebruch Surfaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 2, pp. 125-132. http://geodesic.mathdoc.fr/item/JSFU_2008_1_2_a1/