Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2008_1_1_a5, author = {Ivan V. Shestakov and Alexander A. Shlapunov}, title = {On the {Cauchy} {Problem} for {Operators} with {Injective} {Symbols} in {Sobolev} {Spaces}}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {52--62}, publisher = {mathdoc}, volume = {1}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_1_a5/} }
TY - JOUR AU - Ivan V. Shestakov AU - Alexander A. Shlapunov TI - On the Cauchy Problem for Operators with Injective Symbols in Sobolev Spaces JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2008 SP - 52 EP - 62 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2008_1_1_a5/ LA - en ID - JSFU_2008_1_1_a5 ER -
%0 Journal Article %A Ivan V. Shestakov %A Alexander A. Shlapunov %T On the Cauchy Problem for Operators with Injective Symbols in Sobolev Spaces %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2008 %P 52-62 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2008_1_1_a5/ %G en %F JSFU_2008_1_1_a5
Ivan V. Shestakov; Alexander A. Shlapunov. On the Cauchy Problem for Operators with Injective Symbols in Sobolev Spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 1, pp. 52-62. http://geodesic.mathdoc.fr/item/JSFU_2008_1_1_a5/
[1] J. Hadamard, Le problème de Cauchy et les equations aux derivées partielles linéares hyperboliques, Gauthier-Villars, Paris, 1932 | Zbl
[2] N. N. Tarkhanov, The Cauchy problem for solutions of elliptic equations, Akademie Verlag, Berlin, 1995 | MR | Zbl
[3] M. M. Lavrent'ev, “On the Cauchy problem for Laplace's equation”, Izvestija AN SSSR. Ser. mat., 20 (1956), 819–842 (Russian) | MR
[4] V. G. Maz'ya, V. P. Havin, “On the solutions of the Cauchy problem for Laplace's equation (uniqueness, normality, approximation)”, Trans. Mosc. Math. Soc., 307 (1974), 61–114 (Russian) | MR
[5] V. A. Kondrat'ev, E. M. Landis, “Qualitative theory for linear differential equations of the second order”, Results of Sciences and Technics, Modern Problems of Mathematics, Fundamental Directions, 32, VINITI AN SSSR, Moscow, 1988, 99–215 (Russian) | MR
[6] Kluwer Ac. Publ., 1993 | MR
[7] M. Nacinovich, “Cauchy problem for overdetermined systems”, Ann. di Mat. Pura ed Appl. (IV), 156 (1990), 265–321 | DOI | MR | Zbl
[8] L. A. Aizenberg, A. M. Kytmanov, “On possibility of holomorphic extension to a domain of fuctions, given on a part of its boundary”, Mat. Sb., 182:4 (1991), 490–507 (Russian) | MR | Zbl
[9] A. A. Shlapunov, N. N. Tarkhanov, “Bases with double orthogonality in the Cauchy problem for systems with injective symbols”, Proc. London Math. Soc., 71:3 (1995), 1–54 | DOI | MR
[10] A. A. Shlapunov, N. N. Tarkhanov, “Mixed problems with a parameter”, Russ. J. Math. Phys., 12:1 (2005), 97–124 | MR
[11] L. Hörmander, Notions of convexity, Birkhäuser Verlag, Berlin, 1994 | MR | Zbl
[12] N. N. Tarkhanov, Complexes of differential operators, Kluwer Ac. Publ., Dordrecht, 1995 | MR | Zbl
[13] Springer Verlag, Berlin, 1992 | MR
[14] P. I. Dudnikov, S. N. Samborskii, “Boundary value and initial-boundary value problem for linear overdetermined systems of partial differential equations”, Results of Sciences and Technics, Modern Problems of Mathematics. Fundamental Directions, 65, VINITI, Moscow, 1991, 5–93 (Russian) | MR
[15] N. N. Tarkhanov, Analysis of solutions to elliptic equations, Kluwer Ac. Publ., Dordrecht, 1997 | MR | Zbl
[16] S. Rempel, B.-W. Schulze, Index theory of elliptic boundary problems, Akademie Verlag, Berlin, 1986 | MR
[17] R. Wells, Differential analysis on complex manifolds, Prentice Hall, Englewood Cliffs, N.J., 1973 | MR | Zbl
[18] H. S. Shapiro, “Stefan Bergman's theory of doubly-orthogonal functions. An operator-theoretic approach”, Proc. Roy. Ac. Sect., 79:6 (1979), 49–56 | MR