Hypergeometric Systems with Polynomial Bases
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 1, pp. 25-32
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that any simplicial or parallelepipedal hypergeometric configuration admits a Puiseux polynomial basis in its solution space for suitable values of its parameters.
Keywords:
hypergeometric systems.
Mots-clés : Puiseux polynomial basis
Mots-clés : Puiseux polynomial basis
@article{JSFU_2008_1_1_a2,
author = {Timur M. Sadykov},
title = {Hypergeometric {Systems} with {Polynomial} {Bases}},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {25--32},
year = {2008},
volume = {1},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_1_a2/}
}
Timur M. Sadykov. Hypergeometric Systems with Polynomial Bases. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 1, pp. 25-32. http://geodesic.mathdoc.fr/item/JSFU_2008_1_1_a2/
[1] A. Dickenstein, L. Matusevich, T. Sadykov, “Bivariate hypergeometric D-modules”, Adv. in Math., 196:1 (2005), 78–123 | DOI | MR | Zbl
[2] I. M. Gelfand, M. I. Graev, V. S. Retach, “General hypergeometric systems of equations and series of hypergeometric type”, Russian Math. Surveys, 47:4 (1992), 1–88 | DOI | MR | Zbl
[3] V. P. Palamodov, Linear differential operators with constant coefficients, Nauka, Moscow, 1967 (Russian) | MR
[4] T. M. Sadykov, “On a multidimensional system of hypergeometric differential equations”, Siberian Math. J., 39 (1998), 986–997 | DOI | MR | Zbl
[5] M. Sato, “Theory of prehomogeneous vector spaces (algebraic part)”, Nagoya Math. J., 120 (1990), 1–34 | MR | Zbl