Microlocal Study of Lefschetz Fixed Point Formulas
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 1, pp. 13-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this short paper is to introduce our recent study on Lefschetz fixed point formulas over singular varieties. In particular, we generalize Kashiwara's theory of characteristic cycles by introducing new Lagrangian cycles associated with endomorphisms of constructible sheaves. Some examples related with Schubert varieties and toric hypersurfaces will also be given.
Keywords: singular varieties, Lefschetz fixed point formulas, Lagrangian cycles, Schubert varieties.
@article{JSFU_2008_1_1_a1,
     author = {Yutaka Matsui and Kiyoshi Takeuchi},
     title = {Microlocal {Study} of {Lefschetz} {Fixed} {Point} {Formulas}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {13--24},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2008_1_1_a1/}
}
TY  - JOUR
AU  - Yutaka Matsui
AU  - Kiyoshi Takeuchi
TI  - Microlocal Study of Lefschetz Fixed Point Formulas
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2008
SP  - 13
EP  - 24
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2008_1_1_a1/
LA  - en
ID  - JSFU_2008_1_1_a1
ER  - 
%0 Journal Article
%A Yutaka Matsui
%A Kiyoshi Takeuchi
%T Microlocal Study of Lefschetz Fixed Point Formulas
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2008
%P 13-24
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2008_1_1_a1/
%G en
%F JSFU_2008_1_1_a1
Yutaka Matsui; Kiyoshi Takeuchi. Microlocal Study of Lefschetz Fixed Point Formulas. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 1 (2008) no. 1, pp. 13-24. http://geodesic.mathdoc.fr/item/JSFU_2008_1_1_a1/

[1] M. Abate, F. Bracci, F. Tovena, “Index theorems for holomorphic self-maps”, Ann. of Math., 159 (2004), 819–864 | DOI | MR | Zbl

[2] T. Braden, “Hyperbolic localization of intersection cohomology”, Transform. Group, 8:3 (2003), 209–216 | DOI | MR | Zbl

[3] A. Dold, “Fixed point index and fixed point theorem for Euclidean neighborhood retracts”, Topology, 4 (1965), 1–8 | DOI | MR | Zbl

[4] L. Ernström, “Topological Radon transforms and the local Euler obstruction”, Duke Math. J., 76 (1994), 1–21 | DOI | MR | Zbl

[5] M. Goresky and R. MacPherson, “Local contribution to the Lefschetz fixed point formula”, Invent. Math., 111 (1993), 1–33 | DOI | MR | Zbl

[6] V. Guillemin, V. Ginzburg, Y. Karshon, Moment maps, cobordisms, and Hamiltonian group actions, Mathematical Surveys and Monographs, 98, Amer. Math. Soc., 2002 | MR | Zbl

[7] S. Guillermou, “Lefschetz class of elliptic pairs”, Duke Math. J., 85:2 (1996), 273–314 | DOI | MR | Zbl

[8] R. Hotta, K. Takeuchi, T. Tanisaki, D-modules, perverse shaves and representation theory, Birkhäuser, 2007 | Zbl

[9] M. Kashiwara, “Index theorem for constructible sheaves”, Astérisque, no. 130, 1985, 193–209 | MR | Zbl

[10] M. Kashiwara, “Character, character cycle, fixed point theorem and group representations”, Adv. Stud. Pure Math., 14 (1988), 369–378 | MR | Zbl

[11] M. Kashiwara, P. Schapira, Sheaves on manifolds, Grundlehren Math. Wiss., 292, Springer-Verlag, Berlin-Heidelberg-New York, 1990 | MR | Zbl

[12] R. MacPherson, “Chern classes for singular varieties”, Ann. of Math., 100:2 (1974), 423–432 | DOI | MR | Zbl

[13] Y. Matsui, K. Takeuchi, “Generalized Plücker-Teissier-Kleiman formulas for varieties with arbitrary dual defect”, Proceedings of Australian-Japanese workshop on real and complex singularities, World Scientific, 2007, 248–270 | MR | Zbl

[14] Y. Matsui, K. Takeuchi, “Microlocal study of topological Radon transforms and real projective duality”, Adv. in Math., 212:1 (2007), 191–224 | DOI | MR | Zbl

[15] Y. Matsui, K. Takeuchi, Microlocal study of Lefschetz fixed point formulas for higher-dimensional fixed point sets, UTMS preprint series UTMS2007-5, available in http://kyokan.ms.u-tokyo.ac.jp/users/preprint/pdf/2007-5.pdf

[16] R. S. Palais, “Equivalence of nearby differentiable actions of a compact group”, Bull. Amer. Math. Soc., 67 (1961), 362–364 | DOI | MR | Zbl

[17] S. Saito, “General fixed point formula for an algebraic surface and the theory of Swan representations for two-dimensional local rings”, Amer. J. Math., 109 (1987), 1009–1042 | DOI | MR | Zbl

[18] D. Toledo, Y. L. L. Tong, “Duality and intersection theory in complex manifold II”, Ann. of Math., 108 (1978), 519–538 | DOI | MR | Zbl