Identification in Causal Models With Hidden Variables
Journal de la société française de statistique, Causality, Tome 161 (2020) no. 1, pp. 91-119

Voir la notice de l'article provenant de la source Numdam

Targets of inference that establish causality are phrased in terms of counterfactual responses to interventions. These potential outcomes operationalize cause effect relationships by means of comparisons of cases and controls in hypothetical randomized controlled experiments. In many applied settings, data on such experiments is not directly available, necessitating assumptions linking the counterfactual target of inference with the factual observed data distribution. This link is provided by causal models. Originally defined on potential outcomes directly (Rubin, 1976), causal models have been extended to longitudinal settings (Robins, 1986), and reformulated as graphical models Spirtes et al., 2001; Pearl, 2009). In settings where common causes of all observed variables are themselves observed, many causal inference targets are identified via variations of the expression referred to in the literature as the g-formula (Robins, 1986), the manipulated distribution (Spirtes et al., 2001), or the truncated factorization (Pearl, 2009).

In settings where hidden variables are present, identification results become considerably more complicated. In this manuscript, we review identification theory in causal models with hidden variables for common targets that arise in causal inference applications, including causal effects, direct, indirect, and path-specific effects, and outcomes of dynamic treatment regimes. We will describe a simple formulation of this theory (Tian and Pearl, 2002; Shpitser and Pearl, 2006b,b; Tian, 2008; Shpitser, 2013) in terms of causal graphical models, and the fixing operator, a statistical analogue of the intervention operation (Richardson et al., 2017).

Classification : 62H99, 60E05
Keywords: identification, graphical models, causal inference, hidden variable models

Shpitser, Ilya 1

1 Department of Computer Science, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218
@article{JSFS_2020__161_1_91_0,
     author = {Shpitser, Ilya},
     title = {Identification in {Causal} {Models} {With} {Hidden} {Variables}},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {91--119},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {161},
     number = {1},
     year = {2020},
     mrnumber = {4125250},
     zbl = {1445.62129},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFS_2020__161_1_91_0/}
}
TY  - JOUR
AU  - Shpitser, Ilya
TI  - Identification in Causal Models With Hidden Variables
JO  - Journal de la société française de statistique
PY  - 2020
SP  - 91
EP  - 119
VL  - 161
IS  - 1
PB  - Société française de statistique
UR  - http://geodesic.mathdoc.fr/item/JSFS_2020__161_1_91_0/
LA  - en
ID  - JSFS_2020__161_1_91_0
ER  - 
%0 Journal Article
%A Shpitser, Ilya
%T Identification in Causal Models With Hidden Variables
%J Journal de la société française de statistique
%D 2020
%P 91-119
%V 161
%N 1
%I Société française de statistique
%U http://geodesic.mathdoc.fr/item/JSFS_2020__161_1_91_0/
%G en
%F JSFS_2020__161_1_91_0
Shpitser, Ilya. Identification in Causal Models With Hidden Variables. Journal de la société française de statistique, Causality, Tome 161 (2020) no. 1, pp. 91-119. http://geodesic.mathdoc.fr/item/JSFS_2020__161_1_91_0/