A Primer on Causality in Data Science
Journal de la société française de statistique, Causality, Tome 161 (2020) no. 1, pp. 67-90

Voir la notice de l'article provenant de la source Numdam

Many questions in Data Science are fundamentally causal in that our objective is to learn the effect of some exposure, randomized or not, on an outcome interest. Even studies that are seemingly non-causal, such as those with the goal of prediction or prevalence estimation, have causal elements, including differential censoring or measurement. As a result, we, as Data Scientists, need to consider the underlying causal mechanisms that gave rise to the data, rather than simply the pattern or association observed in those data. In this work, we review the “Causal Roadmap” of Petersen and van der Laan (2014) to provide an introduction to some key concepts in causal inference. Similar to other causal frameworks, the steps of the Roadmap include clearly stating the scientific question, defining of the causal model, translating the scientific question into a causal parameter, assessing the assumptions needed to express the causal parameter as a statistical estimand, implementation of statistical estimators including parametric and semi-parametric methods, and interpretation of our findings. We believe that using such a framework in Data Science will help to ensure that our statistical analyses are guided by the scientific question driving our research, while avoiding over-interpreting our results. We focus on the effect of an exposure occurring at a single time point and highlight the use of targeted maximum likelihood estimation (TMLE) with Super Learner.

Classification : 62-01, 62-07, 62A01, 62P10
Keywords: Causal inference, Directed acyclic graphs (DAGs), Observational studies, Structural causal models, Targeted learning, Targeted maximum likelihood estimation (TMLE)

Saddiki, Hachem 1 ; Balzer, Laura B. 1

1 Department of Biostatistics & Epidemiology, University of Massachusetts-Amherst, 715 North Pleasant St. Amherst, MA 01003-9304.
@article{JSFS_2020__161_1_67_0,
     author = {Saddiki, Hachem and Balzer, Laura B.},
     title = {A {Primer} on {Causality} in {Data} {Science}},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {67--90},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {161},
     number = {1},
     year = {2020},
     mrnumber = {4125249},
     zbl = {1445.62022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFS_2020__161_1_67_0/}
}
TY  - JOUR
AU  - Saddiki, Hachem
AU  - Balzer, Laura B.
TI  - A Primer on Causality in Data Science
JO  - Journal de la société française de statistique
PY  - 2020
SP  - 67
EP  - 90
VL  - 161
IS  - 1
PB  - Société française de statistique
UR  - http://geodesic.mathdoc.fr/item/JSFS_2020__161_1_67_0/
LA  - en
ID  - JSFS_2020__161_1_67_0
ER  - 
%0 Journal Article
%A Saddiki, Hachem
%A Balzer, Laura B.
%T A Primer on Causality in Data Science
%J Journal de la société française de statistique
%D 2020
%P 67-90
%V 161
%N 1
%I Société française de statistique
%U http://geodesic.mathdoc.fr/item/JSFS_2020__161_1_67_0/
%G en
%F JSFS_2020__161_1_67_0
Saddiki, Hachem; Balzer, Laura B. A Primer on Causality in Data Science. Journal de la société française de statistique, Causality, Tome 161 (2020) no. 1, pp. 67-90. http://geodesic.mathdoc.fr/item/JSFS_2020__161_1_67_0/