Efficient Principally Stratified Treatment Effect Estimation in Crossover Studies with Absorbent Binary Endpoints
Journal de la société française de statistique, Causality, Tome 161 (2020) no. 1, pp. 176-200

Voir la notice de l'article provenant de la source Numdam

We consider the estimation of the effect of a binary treatment on a binary endpoint conditional on a post-randomization quantity in a counterfactual world where all individuals received treatment. It is generally difficult to identify this effect without strong, untestable assumptions. It has been shown that identifiability assumptions become weaker under a crossover design where individuals not receiving treatment are later provided treatment. Under the assumption that the post-treatment biomarker observed in these crossover individuals is the same as would have been observed had they received treatment at the start of the study, the treatment effect can be identified with only mild additional assumptions. This remains true if the endpoint is absorbent, that is, if the post-crossover treatment biomarker is not meaningful if the endpoint has already occurred. Examples of absorbent endpoints include death and HIV infection. We provide identifiability conditions for the principally stratified treatment effect of interest when the data arise from a crossover design and describe situations where these conditions would be falsifiable given a large sample from the observed data distribution. We then introduce a nonparametric estimator for this effect. When the biomarker is discrete, this estimator is efficient among all regular and asymptotically linear estimators.

Classification : 62K99, 62G20
Keywords: absorbent binary endpoints, closeout design, crossover design, principal stratification

Luedtke, Alex 1, 2 ; Wu, Jiacheng 3

1 Department of Statistics, University of Washington, 4060 E Stevens Way NE, Seattle, WA 98195, USA.
2 Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA.
3 Department of Biostatistics, University of Washington, 1705 NE Pacific St, Seattle, WA 98195, USA.
@article{JSFS_2020__161_1_176_0,
     author = {Luedtke, Alex and Wu, Jiacheng},
     title = {Efficient {Principally} {Stratified} {Treatment} {Effect} {Estimation} in {Crossover} {Studies} with {Absorbent} {Binary} {Endpoints}},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {176--200},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {161},
     number = {1},
     year = {2020},
     mrnumber = {4125254},
     zbl = {1443.62217},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFS_2020__161_1_176_0/}
}
TY  - JOUR
AU  - Luedtke, Alex
AU  - Wu, Jiacheng
TI  - Efficient Principally Stratified Treatment Effect Estimation in Crossover Studies with Absorbent Binary Endpoints
JO  - Journal de la société française de statistique
PY  - 2020
SP  - 176
EP  - 200
VL  - 161
IS  - 1
PB  - Société française de statistique
UR  - http://geodesic.mathdoc.fr/item/JSFS_2020__161_1_176_0/
LA  - en
ID  - JSFS_2020__161_1_176_0
ER  - 
%0 Journal Article
%A Luedtke, Alex
%A Wu, Jiacheng
%T Efficient Principally Stratified Treatment Effect Estimation in Crossover Studies with Absorbent Binary Endpoints
%J Journal de la société française de statistique
%D 2020
%P 176-200
%V 161
%N 1
%I Société française de statistique
%U http://geodesic.mathdoc.fr/item/JSFS_2020__161_1_176_0/
%G en
%F JSFS_2020__161_1_176_0
Luedtke, Alex; Wu, Jiacheng. Efficient Principally Stratified Treatment Effect Estimation in Crossover Studies with Absorbent Binary Endpoints. Journal de la société française de statistique, Causality, Tome 161 (2020) no. 1, pp. 176-200. http://geodesic.mathdoc.fr/item/JSFS_2020__161_1_176_0/