Assessing trends in vaccine efficacy by pathogen genetic distance
Journal de la société française de statistique, Causality, Tome 161 (2020) no. 1, pp. 164-175

Voir la notice de l'article provenant de la source Numdam

Preventive vaccines are an effective public health intervention for reducing the burden of infectious diseases, but have yet to be developed for several major infectious diseases. Vaccine sieve analysis studies whether and how the efficacy of a vaccine varies with the genetics of the infectious pathogen, which may help guide future vaccine development and deployment. A standard statistical approach to sieve analysis compares the effect of the vaccine to prevent infection and disease caused by pathogen types defined dichotomously as genetically near or far from a reference pathogen strain inside the vaccine construct. For example, near may be defined by amino acid identity at all amino acid positions considered in a multiple alignment and far defined by at least one amino acid difference. An alternative approach is to study the efficacy of the vaccine as a function of genetic distance from a pathogen to a reference vaccine strain where the distance cumulates over the set of amino acid positions. We propose a nonparametric method for estimating and testing the trend in the effect of a vaccine across genetic distance. We illustrate the operating characteristics of the estimator via simulation and apply the method to a recent preventive malaria vaccine efficacy trial.

Classification : 62G10, 62N03, 62P10
Keywords: vaccines, competing risks, causal inference, marginal structural model, Hamming distance

Benkeser, David 1 ; Juraska, Michal 2 ; Gilbert, Peter B. 2

1 Department of Biostatistics and Bioinformatics, Emory University; 1518 Clifton Rd. NE; Atlanta, GA USA 30322
2 Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center; 1100 Fairview Ave. N; Seattle, WA USA 98109
@article{JSFS_2020__161_1_164_0,
     author = {Benkeser, David and Juraska, Michal and Gilbert, Peter B.},
     title = {Assessing trends in vaccine efficacy  by pathogen genetic distance},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {164--175},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {161},
     number = {1},
     year = {2020},
     mrnumber = {4125253},
     zbl = {1443.62376},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFS_2020__161_1_164_0/}
}
TY  - JOUR
AU  - Benkeser, David
AU  - Juraska, Michal
AU  - Gilbert, Peter B.
TI  - Assessing trends in vaccine efficacy  by pathogen genetic distance
JO  - Journal de la société française de statistique
PY  - 2020
SP  - 164
EP  - 175
VL  - 161
IS  - 1
PB  - Société française de statistique
UR  - http://geodesic.mathdoc.fr/item/JSFS_2020__161_1_164_0/
LA  - en
ID  - JSFS_2020__161_1_164_0
ER  - 
%0 Journal Article
%A Benkeser, David
%A Juraska, Michal
%A Gilbert, Peter B.
%T Assessing trends in vaccine efficacy  by pathogen genetic distance
%J Journal de la société française de statistique
%D 2020
%P 164-175
%V 161
%N 1
%I Société française de statistique
%U http://geodesic.mathdoc.fr/item/JSFS_2020__161_1_164_0/
%G en
%F JSFS_2020__161_1_164_0
Benkeser, David; Juraska, Michal; Gilbert, Peter B. Assessing trends in vaccine efficacy  by pathogen genetic distance. Journal de la société française de statistique, Causality, Tome 161 (2020) no. 1, pp. 164-175. http://geodesic.mathdoc.fr/item/JSFS_2020__161_1_164_0/