Data-adaptive doubly robust instrumental variable methods for treatment effect heterogeneity
[Estimateurs doublement robustes avec apprentissage automatique pour l’estimation de l’hétérogénéité de l’effet traitement dans les modèles à variables instrumentales]
Journal de la société française de statistique, Causality, Tome 161 (2020) no. 1, pp. 135-163

Voir la notice de l'article provenant de la source Numdam

We consider the estimation of the average treatment effect in the treated as a function of baseline covariates, where there is a valid (conditional) instrument.

We describe two doubly-robust (DR) estimators: a g-estimator and a targeted minimum loss-based estimator (TMLE). These estimators can be viewed as generalisations of the two-stage least squares (TSLS) method to semi-parametric models that make weaker assumptions. We exploit recent theoretical results and use data-adaptive estimation of the nuisance parameters for the g-estimator.

A simulation study is used to compare standard TSLS with the two DR estimators’ finite-sample performance when using (1) parametric or (2) data-adaptive estimation of the nuisance parameters.

Data-adaptive DR estimators have lower bias and improved coverage, when compared to incorrectly specified parametric DR estimators and TSLS. When the parametric model for the treatment effect curve is correctly specified, the g-estimator outperforms all others, but when this model is misspecified, TMLE performs best, while TSLS can result in large biases and zero coverage.

The methods are also applied to the COPERS (COping with persistent Pain, Effectiveness Research in Self-management) trial to make inferences about the causal effect of treatment actually received, and the extent to which this is modified by depression at baseline.

Classification : 62F35, 62G05, 46N30
Keywords: Instrumental variables, doubly robustness, machine learning estimation, heterogeneous treatment effects,, g-estimation, TMLE

DiazOrdaz, Karla 1 ; Daniel, Rhian 2 ; Kreif, Noemi 3

1 Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London United Kingdom.
2 Division of Population Medicine, Cardiff University, Wales, United Kingdom.
3 Centre for Health Economics, University of York, United Kingdom.
@article{JSFS_2020__161_1_135_0,
     author = {DiazOrdaz, Karla and Daniel, Rhian and Kreif, Noemi},
     title = {Data-adaptive doubly robust instrumental variable methods for treatment effect heterogeneity},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {135--163},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {161},
     number = {1},
     year = {2020},
     mrnumber = {4125252},
     zbl = {1443.62131},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFS_2020__161_1_135_0/}
}
TY  - JOUR
AU  - DiazOrdaz, Karla
AU  - Daniel, Rhian
AU  - Kreif, Noemi
TI  - Data-adaptive doubly robust instrumental variable methods for treatment effect heterogeneity
JO  - Journal de la société française de statistique
PY  - 2020
SP  - 135
EP  - 163
VL  - 161
IS  - 1
PB  - Société française de statistique
UR  - http://geodesic.mathdoc.fr/item/JSFS_2020__161_1_135_0/
LA  - en
ID  - JSFS_2020__161_1_135_0
ER  - 
%0 Journal Article
%A DiazOrdaz, Karla
%A Daniel, Rhian
%A Kreif, Noemi
%T Data-adaptive doubly robust instrumental variable methods for treatment effect heterogeneity
%J Journal de la société française de statistique
%D 2020
%P 135-163
%V 161
%N 1
%I Société française de statistique
%U http://geodesic.mathdoc.fr/item/JSFS_2020__161_1_135_0/
%G en
%F JSFS_2020__161_1_135_0
DiazOrdaz, Karla; Daniel, Rhian; Kreif, Noemi. Data-adaptive doubly robust instrumental variable methods for treatment effect heterogeneity. Journal de la société française de statistique, Causality, Tome 161 (2020) no. 1, pp. 135-163. http://geodesic.mathdoc.fr/item/JSFS_2020__161_1_135_0/