Outlier identification for skewed and/or heavy-tailed unimodal multivariate distributions
[Identification de valeurs extrêmes pour des distributions multivariées unimodales asymétriques et/ou à queues lourdes]
Journal de la société française de statistique, Tome 157 (2016) no. 2, pp. 90-114.

Voir la notice de l'article provenant de la source Numdam

In multivariate analysis, it is very difficult to identify outliers in case of skewed and/or heavy-tailed distributions. In this paper, we propose a very simple outlier identification tool that works with these types of distributions and that keeps the computational complexity low.

L’identification de valeurs extrêmes s’avère particulièrement délicate en analyse multivariée lorsque la distribution sous-jacente est asymétrique et/ou à queues lourdes. Cet article présente une méthode d’identification extrêmement simple, bien adaptée à ce type de distribution et qui n’exige qu’une faible complexité calculatoire.

Keywords: outlier identification, skewed multivariate distribution, heavy-tailed multivariate distribution, Tukey $g$-and-$h$ distribution
Mots-clés : identification de valeurs extrêmes, distribution multivariée asymétrique, distribution multivariée à queues lourdes, distribution de Tukey $g$-et-$h$
@article{JSFS_2016__157_2_90_0,
     author = {Verardi, Vincenzo and Vermandele, Catherine},
     title = {Outlier identification for skewed and/or heavy-tailed unimodal multivariate distributions},
     journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique},
     pages = {90--114},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {157},
     number = {2},
     year = {2016},
     mrnumber = {3554075},
     zbl = {1358.62053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFS_2016__157_2_90_0/}
}
TY  - JOUR
AU  - Verardi, Vincenzo
AU  - Vermandele, Catherine
TI  - Outlier identification for skewed and/or heavy-tailed unimodal multivariate distributions
JO  - Journal de la société française de statistique
PY  - 2016
SP  - 90
EP  - 114
VL  - 157
IS  - 2
PB  - Société française de statistique
UR  - http://geodesic.mathdoc.fr/item/JSFS_2016__157_2_90_0/
LA  - en
ID  - JSFS_2016__157_2_90_0
ER  - 
%0 Journal Article
%A Verardi, Vincenzo
%A Vermandele, Catherine
%T Outlier identification for skewed and/or heavy-tailed unimodal multivariate distributions
%J Journal de la société française de statistique
%D 2016
%P 90-114
%V 157
%N 2
%I Société française de statistique
%U http://geodesic.mathdoc.fr/item/JSFS_2016__157_2_90_0/
%G en
%F JSFS_2016__157_2_90_0
Verardi, Vincenzo; Vermandele, Catherine. Outlier identification for skewed and/or heavy-tailed unimodal multivariate distributions. Journal de la société française de statistique, Tome 157 (2016) no. 2, pp. 90-114. http://geodesic.mathdoc.fr/item/JSFS_2016__157_2_90_0/

[1] Brys, G.; Hubert, M.; Struyf, A. A robust measure of skewness, Journal of Computational and Graphical Statistics, Volume 13 (2004) no. 4, pp. 996-1017 | MR

[2] Bruffaerts, C.; Verardi, V.; Vermandele, C. A generalized boxplot for skewed and heavy-tailed distributions, Statistics and Probability Letters, Volume 95 (2014) no. 1, pp. 110-117 | MR | Zbl

[3] Donoho, D.L. Breakdown properties of multivariate location estimators (1982) (Technical report Qualifying paper)

[4] Hoaglin, D.C.; Mosteller, F.; Tukey, J.W. Exploring Data Tables, Trends and Shapes (Wiley, ed.), Wiley, New York, 1985 | Zbl

[5] Hubert, M.; Vandervieren, E. An adjusted boxplot for skewed distributions, Comput. Stat. Data Anal., Volume 52 (2008) no. 12, pp. 5186-5201 | MR | Zbl

[6] Hubert, M.; Van der Veeken, S. Outlier detection for skewed data, J. Chemometrics, Volume 22 (2008) no. 3-4, pp. 235-246

[7] Jiménez, J.A.; Arunachalam, V. Using Tukey’s g and h family of distributions to calculate value-at-risk and conditional value-at-risk, J. Risk, Volume 13 (2011) no. 4, pp. 95-116

[8] Jones, M. C.; Pewsey, A. Sinh-arcsinh distributions, Biometrika, Volume 96 (2009) no. 4, pp. 761-780 | MR | Zbl

[9] Ley, Chr. Flexible modelling in statistics: past, present and future, Journal de la Société Française de Statistique, Volume 156 (2015) no. 1, pp. 76-96 | MR | Zbl | mathdoc-id

[10] MacGillivray, H.L. Shape properties of the g-and-h and Johnson families, Communications in Statistics - Theory and Methods, Volume 21 (1992) no. 5, pp. 1233-1250 | MR | Zbl

[11] Martinez, J.; Iglewicz, B. Some properties of the Tukey g-and-h family of distributions, Communications in Statistics - Theory and Methods, Volume 13 (1984) no. 3, pp. 353-369 | MR | Zbl

[12] Mahbubul, A.; Majumder, A.; Ali, M.M. A comparison of methods of estimation of parameters of Tukey’s gh family of distributions, Pakistan Journal of Statistics, Volume 24 (2008) no. 2, pp. 135-144 | MR

[13] Maronna, R.A.; Yohai, V.J. The behavior of the Stahel-Donoho robust multivariate estimator, Journal of the American Statistical Association, Volume 90 (1995) no. 429, pp. 330-341 | MR | Zbl

[14] Stahel, W.A. Robuste Schätzungen: Infinitesimale Optimalität und Schätzungen von Kovarianzmatrizen, ETH Zürich (1981) (Ph. D. Thesis) | Zbl

[15] Tukey, J.W. Modern techniques in data analysis, Proceedings of the NSF-Sponsored Regional Research Conference (1977)

[16] Xu, G.; Genton, M.G. Efficient maximum approximated likelihood inference for Tukey’s, Computational Statistics & Data Analysis, Volume 91 (2015), pp. 78-91 | MR | Zbl

[17] Xu, Y.; Iglewicz, B.; Chervoneva, I. Robust estimation of the parameters of g-and-h distributions, with application to outlier detection, Computational Statistics & Data Analysis, Volume 75 (2014), pp. 66-80 | MR | Zbl