An arithmetic proof of Pop`s Theorem concerning Galois groups of function fields over number fields.
Journal für die reine und angewandte Mathematik, Tome 478 (1996), pp. 107-126
Cet article a éte moissonné depuis la source European Digital Mathematics Library
@article{JRAM_1996__478_153848,
author = {Michael Spiess},
title = {An arithmetic proof of {Pop`s} {Theorem} concerning {Galois} groups of function fields over number fields.},
journal = {Journal f\"ur die reine und angewandte Mathematik},
pages = {107--126},
year = {1996},
volume = {478},
zbl = {0933.11054},
url = {http://geodesic.mathdoc.fr/item/JRAM_1996__478_153848/}
}
TY - JOUR AU - Michael Spiess TI - An arithmetic proof of Pop`s Theorem concerning Galois groups of function fields over number fields. JO - Journal für die reine und angewandte Mathematik PY - 1996 SP - 107 EP - 126 VL - 478 UR - http://geodesic.mathdoc.fr/item/JRAM_1996__478_153848/ ID - JRAM_1996__478_153848 ER -
%0 Journal Article %A Michael Spiess %T An arithmetic proof of Pop`s Theorem concerning Galois groups of function fields over number fields. %J Journal für die reine und angewandte Mathematik %D 1996 %P 107-126 %V 478 %U http://geodesic.mathdoc.fr/item/JRAM_1996__478_153848/ %F JRAM_1996__478_153848
Michael Spiess. An arithmetic proof of Pop`s Theorem concerning Galois groups of function fields over number fields.. Journal für die reine und angewandte Mathematik, Tome 478 (1996), pp. 107-126. http://geodesic.mathdoc.fr/item/JRAM_1996__478_153848/