Quantitative aspects of non-unique factorization: A general theory with applications to algebraic function fields.
Journal für die reine und angewandte Mathematik, Tome 421 (1991), pp. 159-188
Cet article a éte moissonné depuis la source European Digital Mathematics Library
Mots-clés :
Dedekind domain, asymptotic behaviour, number of elements, quantitative results, non-unique factorization, rings of integers in algebraic number fields, holomorphy rings in algebraic function fields, Hilbert semigroups, formation, Dirichlet series
@article{JRAM_1991__421_153369,
author = {W. M\"uller and F. Halter-Koch},
title = {Quantitative aspects of non-unique factorization: {A} general theory with applications to algebraic function fields.},
journal = {Journal f\"ur die reine und angewandte Mathematik},
pages = {159--188},
year = {1991},
volume = {421},
zbl = {0736.11064},
url = {http://geodesic.mathdoc.fr/item/JRAM_1991__421_153369/}
}
TY - JOUR AU - W. Müller AU - F. Halter-Koch TI - Quantitative aspects of non-unique factorization: A general theory with applications to algebraic function fields. JO - Journal für die reine und angewandte Mathematik PY - 1991 SP - 159 EP - 188 VL - 421 UR - http://geodesic.mathdoc.fr/item/JRAM_1991__421_153369/ ID - JRAM_1991__421_153369 ER -
%0 Journal Article %A W. Müller %A F. Halter-Koch %T Quantitative aspects of non-unique factorization: A general theory with applications to algebraic function fields. %J Journal für die reine und angewandte Mathematik %D 1991 %P 159-188 %V 421 %U http://geodesic.mathdoc.fr/item/JRAM_1991__421_153369/ %F JRAM_1991__421_153369
W. Müller; F. Halter-Koch. Quantitative aspects of non-unique factorization: A general theory with applications to algebraic function fields.. Journal für die reine und angewandte Mathematik, Tome 421 (1991), pp. 159-188. http://geodesic.mathdoc.fr/item/JRAM_1991__421_153369/