Degree problems of representation theory over arbitrary fields of characteristic 0. Part 2: Groups which have only two reduces degrees.
Journal für die reine und angewandte Mathematik, Tome 389 (1988), pp. 122-132.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : reduced degrees, derived length, supersolvable, normal nilpotent subgroup
@article{JRAM_1988__389_153050,
     author = {Bertram Huppert and Roderick Gow},
     title = {Degree problems of representation theory over arbitrary fields of characteristic 0. {Part} 2: {Groups} which have only two reduces degrees.},
     journal = {Journal f\"ur die reine und angewandte Mathematik},
     pages = {122--132},
     publisher = {mathdoc},
     volume = {389},
     year = {1988},
     zbl = {0639.20007},
     url = {http://geodesic.mathdoc.fr/item/JRAM_1988__389_153050/}
}
TY  - JOUR
AU  - Bertram Huppert
AU  - Roderick Gow
TI  - Degree problems of representation theory over arbitrary fields of characteristic 0. Part 2: Groups which have only two reduces degrees.
JO  - Journal für die reine und angewandte Mathematik
PY  - 1988
SP  - 122
EP  - 132
VL  - 389
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JRAM_1988__389_153050/
ID  - JRAM_1988__389_153050
ER  - 
%0 Journal Article
%A Bertram Huppert
%A Roderick Gow
%T Degree problems of representation theory over arbitrary fields of characteristic 0. Part 2: Groups which have only two reduces degrees.
%J Journal für die reine und angewandte Mathematik
%D 1988
%P 122-132
%V 389
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JRAM_1988__389_153050/
%F JRAM_1988__389_153050
Bertram Huppert; Roderick Gow. Degree problems of representation theory over arbitrary fields of characteristic 0. Part 2: Groups which have only two reduces degrees.. Journal für die reine und angewandte Mathematik, Tome 389 (1988), pp. 122-132. http://geodesic.mathdoc.fr/item/JRAM_1988__389_153050/