Primitive roots modulo a prime as consecutive terms of an arithmetic progression.
Journal für die reine und angewandte Mathematik, Tome 235 (1969), pp. 185-188.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : number theory
@article{JRAM_1969__235_150923,
     author = {Emanuel Vegh},
     title = {Primitive roots modulo a prime as consecutive terms of an arithmetic progression.},
     journal = {Journal f\"ur die reine und angewandte Mathematik},
     pages = {185--188},
     publisher = {mathdoc},
     volume = {235},
     year = {1969},
     zbl = {0172.32502},
     url = {http://geodesic.mathdoc.fr/item/JRAM_1969__235_150923/}
}
TY  - JOUR
AU  - Emanuel Vegh
TI  - Primitive roots modulo a prime as consecutive terms of an arithmetic progression.
JO  - Journal für die reine und angewandte Mathematik
PY  - 1969
SP  - 185
EP  - 188
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JRAM_1969__235_150923/
ID  - JRAM_1969__235_150923
ER  - 
%0 Journal Article
%A Emanuel Vegh
%T Primitive roots modulo a prime as consecutive terms of an arithmetic progression.
%J Journal für die reine und angewandte Mathematik
%D 1969
%P 185-188
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JRAM_1969__235_150923/
%F JRAM_1969__235_150923
Emanuel Vegh. Primitive roots modulo a prime as consecutive terms of an arithmetic progression.. Journal für die reine und angewandte Mathematik, Tome 235 (1969), pp. 185-188. http://geodesic.mathdoc.fr/item/JRAM_1969__235_150923/