On projective classification of points of a submanifold in the Euclidean space
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 3, pp. 364-371 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose the classification of points of a submanifold in the Euclidean space in terms of the indicatrix of normal curvature up to projective transformation and give a necessary condition for finiteness of number of such classes. We apply the condition to the case of three-dimensional submanifold in six-dimensional Euclidean space and prove that there are 10 types of projectively equivalent points.
@article{JMAG_2020_16_3_a7,
     author = {Alexander Yampolsky},
     title = {On projective classification of points of a submanifold in the {Euclidean} space},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {364--371},
     year = {2020},
     volume = {16},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_3_a7/}
}
TY  - JOUR
AU  - Alexander Yampolsky
TI  - On projective classification of points of a submanifold in the Euclidean space
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2020
SP  - 364
EP  - 371
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2020_16_3_a7/
LA  - en
ID  - JMAG_2020_16_3_a7
ER  - 
%0 Journal Article
%A Alexander Yampolsky
%T On projective classification of points of a submanifold in the Euclidean space
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2020
%P 364-371
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2020_16_3_a7/
%G en
%F JMAG_2020_16_3_a7
Alexander Yampolsky. On projective classification of points of a submanifold in the Euclidean space. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 3, pp. 364-371. http://geodesic.mathdoc.fr/item/JMAG_2020_16_3_a7/

[1] A. Borisenko, Intrinsic and exrtinsic geometry of multidimensional submanifolds, Examen, M., 2003 (Russian)

[2] Sib. Math. J., 31 (1990), 379–387 | DOI | MR | Zbl

[3] Russian Math. Surveys, 52:6 (1997), 1141–1190 | DOI | DOI | MR | Zbl

[4] J. Sov. Math., 59:2 (1992), 697–709 | DOI | MR

[5] A. Borisenko, “On the Structure of Multidimensional Submanifolds with Metric of Revolution in Euclidean Space”, Zh. Mat. Fiz. Anal. Geom., 15:2 (2019), 192–202 | DOI | MR | Zbl

[6] A. Borisenko, O. Lejbina, “Classification of points of two- and tree- dimensional complex surfaces by Grassmann image”, Mat. Fiz. Anal. Geom., 9:4 (2002), 572–594 (Russian) | MR | Zbl

[7] A. Coffman, A. Schwartz, C. Stanton, “The algebra and geometry of Steiner and other quadratically parametrizable surfaces”, Comput. Aided Geom. Design., 13:3, 257–286 | DOI | MR | Zbl

[8] A. Coffman, https://users.pfw.edu/CoffmanA/steinersurface.html