On the Cauchy–Riemann geometry of transversal curves in the 3-sphere
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 3, pp. 312-363 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathrm S^3$ be the unit sphere of $\mathbb C^2$ with its standard Cauchy–Riemann (CR) structure. This paper investigates the CR geometry of curves in $\mathrm S^3$ which are transversal to the contact distribution, using the local CR invariants of $\mathrm S^3$. More specifically, the focus is on the CR geometry of transversal knots. Four global invariants of transversal knots are considered: the phase anomaly, the CR spin, the Maslov index, and the CR self-linking number. The interplay between these invariants and the Bennequin number of a knot are discussed. Next, the simplest CR invariant variational problem for generic transversal curves is considered and its closed critical curves are studied.
@article{JMAG_2020_16_3_a6,
     author = {Emilio Musso and Lorenzo Nicolodi and Filippo Salis},
     title = {On the {Cauchy{\textendash}Riemann} geometry of transversal curves in the 3-sphere},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {312--363},
     year = {2020},
     volume = {16},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_3_a6/}
}
TY  - JOUR
AU  - Emilio Musso
AU  - Lorenzo Nicolodi
AU  - Filippo Salis
TI  - On the Cauchy–Riemann geometry of transversal curves in the 3-sphere
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2020
SP  - 312
EP  - 363
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2020_16_3_a6/
LA  - en
ID  - JMAG_2020_16_3_a6
ER  - 
%0 Journal Article
%A Emilio Musso
%A Lorenzo Nicolodi
%A Filippo Salis
%T On the Cauchy–Riemann geometry of transversal curves in the 3-sphere
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2020
%P 312-363
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2020_16_3_a6/
%G en
%F JMAG_2020_16_3_a6
Emilio Musso; Lorenzo Nicolodi; Filippo Salis. On the Cauchy–Riemann geometry of transversal curves in the 3-sphere. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 3, pp. 312-363. http://geodesic.mathdoc.fr/item/JMAG_2020_16_3_a6/

[1] T.F. Banchoff, “Osculating tubes and self-linking for curves on the three-sphere”, Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), Contemp. Math., 288, Amer. Math. Soc., Providence, RI, 2001, 10–19 | DOI | MR | Zbl

[2] E. Barletta, S. Dragomir, “Robinson–Sparling construction of CR structures associated to shearfree null geodesic congruences”, Riv. Mat. Univ. Parma, 11 (2020) (to appear) | MR | Zbl

[3] D. Bennequin, “Entrelacements et équations de Pfaff”, Third Schnepfenried geometry conference (Schnepfenried, 1982), v. 1, Astérisque, 107–108, Soc. Math. France, Paris, 1983, 87–161 (French) | MR

[4] D. Burns, Jr., K. Diederich, S. Shnider, “Distinguished curves in pseudoconvex boundaries”, Duke Math. J., 44:2 (1977), 407–431 | DOI | MR | Zbl

[5] R.L. Bryant, “On notions of equivalence of variational problems with one independent variable”, Contemp. Math., 68, 1987, 65–76 | DOI | MR | Zbl

[6] G. C{ă}lug{ă}reanu, “L'intégral de Gauss et l'analyse des noeuds tridimensionnels”, Rev. Math. Pures Appl., 4 (1959), 5–20 (French) | MR

[7] Oeuvres II, 2, 1931–1304 (French) | DOI | MR

[8] Oeuvres III, 2, 1217–1238 (French) | MR

[9] Y. Chekanov, “Differential algebra of Legendrian links”, Invent. Math., 150:3 (2002), 441–483 | DOI | MR | Zbl

[10] S.S. Chern, R.S. Hamilton, “On Riemannian metrics adapted to three-dimensional contact manifolds. With an appendix by Alan Weinstein”, Workshop Bonn 1984 (Bonn, 1984), Lecture Notes in Math., 1111, Springer, Berlin, 1985, 279–308 | DOI | MR

[11] S.S. Chern, J.K. Moser, “Real hypersurfaces in complex manifolds”, Acta Math., 133 (1974), 219–271 | DOI | MR

[12] D. DeTurck, H. Gluck, “Linking, twisting, writhing, and helicity on the 3-sphere and in hyperbolic 3-space”, J. Differential Geom., 94:1 (2013), 87–128 | DOI | MR | Zbl

[13] A. Dzhalilov, E. Musso, L. Nicolodi, “Conformal geometry of timelike curves in the (1+2)-Einstein universe”, Nonlinear Anal., 143 (2016), 224–255 | DOI | MR | Zbl

[14] Y. Eliashberg, “Legendrian and transversal knots in tight contact 3-manifolds”, Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, 171–193 | MR | Zbl

[15] J.B. Etnyre, “Transversal torus knots”, Geom. Topol., 3 (1999), 253–268 | DOI | MR | Zbl

[16] J.B. Etnyre, “Legendrian and transveral knots”, Hanbook of Knot Theory, eds. W. Menasco, M. Thistlethwaite, Elsevier B. V., Amsterdam, 2005, 105–185, arXiv: math/0306256v2 | DOI | Zbl

[17] J.B. Etnyre, K. Honda, “Knots and contact geometry I: torus knots and the figure eight knot”, J. Symplectic Geom., 1 (2001), 63–120 | DOI | MR | Zbl

[18] F.A. Farris, “An intrinsic construction of Fefferman's CR metric”, Pacific J. Math., 123:1 (1986), 33–45 | DOI | MR | Zbl

[19] C.L. Fefferman, “Monge–Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains”, Ann. of Math. (2), 103:2 (1976), 395–416 | DOI | MR | Zbl

[20] D. Fuchs, S. Tabachnikov, “Invariants of Legendrian and transverse knots in the standard contact space”, Topology, 36:5 (1997), 1025–1053 | DOI | MR | Zbl

[21] F.B. Fuller, “The writhing number of a space curve”, Proc. Nat. Acad. Sci. U.S.A., 68 (1971), 815–819 | DOI | MR | Zbl

[22] H. Gluck, L.-H. Pan, “Embedding and knotting of positive curvature surfaces in 3-space”, Topology, 37:4 (1998), 851–873 | DOI | MR | Zbl

[23] J.D. Grant, E. Musso, “Coisotropic variational problems”, J. Geom. Phys., 50 (2004), 303–338 | DOI | MR | Zbl

[24] P.A. Griffiths, Exterior differential systems and the calculus of variations, Progress in Mathematics, 25, Birkhäuser, Boston, 1982 | MR

[25] L. Hsu, “Calculus of variations via the Griffiths formalism”, J. Differential Geom., 36 (1992), 551–589 | DOI | MR | Zbl

[26] H. Jacobowitz, “Chains in CR geometry”, J. Differential Geom., 21:2 (1985), 163–194 | DOI | MR | Zbl

[27] G.R. Jensen, E. Musso, L. Nicolodi, “The geometric Cauchy problem for the membrane shape equation”, J. Phys. A, 47:49 (2014), 495201, 22 pp. | DOI | MR | Zbl

[28] G. R. Jensen, E. Musso, L. Nicolodi, Surfaces in Classical Geometries. A Treatment by Moving Frames, Universitext, Springer, Cham, 2016 | DOI | MR | Zbl

[29] L.K. Koch, “Chains on CR manifolds and Lorentz geometry”, Trans. Amer. Math. Soc., 307:2 (1988), 827–841 | DOI | MR | Zbl

[30] J.M. Lee, “The Fefferman metric and pseudohermitian invariants”, Trans. Amer. Math. Soc., 296:1 (1986), 411–429 | MR | Zbl

[31] E.E. Levi, “Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse”, Ann. Mat. Pura Appl., 17:1 (1910), 61–87 (Italian) | DOI | Zbl

[32] E.E. Levi, “Sulle ipersuperficie dello spazio a 4 dimensioni che possono essere frontiera del campo di esistenza di una funzione analitica di due variabili complesse”, Ann. Mat. Pura Appl., 18:1 (1911), 69–79 (Italian) | DOI | Zbl

[33] H. Lewy, “An example of a smooth linear partial differential equation without solution”, Ann. of Math. (2), 66 (1957), 155–158 | DOI | MR

[34] J. Martinet, “Formes de contact sur les variétés de dimension 3”, Proceedings of Liverpool Singularities Symposium (1969/1970), v. II, Lecture Notes in Math., 209, Springer, Berlin, 1971, 142–163 | DOI | MR

[35] E. Musso, “The local embedding problem for optical structures”, J. Geom. Phys., 10:1 (1992), 1–18 | DOI | MR | Zbl

[36] E. Musso, L. Nicolodi, “Closed trajectories of a particle model on null curves in anti-de Sitter 3-space”, Classical Quantum Gravity, 24:22 (2007), 5401–5411 | DOI | MR | Zbl

[37] E. Musso, L. Nicolodi, “Reduction for constrained variational problems on 3-dimensional null curves”, SIAM J. Control Optim., 47:3 (2008), 1399–1414 | DOI | MR | Zbl

[38] E. Musso, L. Nicolodi, “Quantization of the conformal arclength functional on space curves”, Comm. Anal. Geom., 25:1 (2017), 209–242 | DOI | MR | Zbl

[39] E. Musso, F. Salis, “The Cauchy–Riemann strain functional for Legendrian curves in the 3-sphere”, Annali di Matematica, 2020, arXiv: 2003.01713v1 | DOI | MR

[40] J. O'Hara, Energy of Knots and Conformal Geometry, Series on Knots and Everything, 33, World Scientific Publishing Co., Inc., River Edge, NJ, 2003 | DOI | MR | Zbl

[41] W.F. Pohl, “The self-linking number of a closed space curve”, J. Math. Mech., 17 (1968), 975–985 | MR | Zbl

[42] H. Poincaré, “Les fonctions analytiques de deux variables et la représentation conforme”, Rend. Circ. Mat. Palermo, 1907, 185–220 (French) | DOI | Zbl

[43] I. Robinson, A. Trautman, “Integrable optical geometry”, Lett. Math. Phys., 10:2-3 (1985), 179–182 | DOI | MR | Zbl

[44] I. Robinson, A. Trautman, “Cauchy–Riemann structures in optical geometry”, Proceedings of the fourth Marcel Grossmann meeting on general relativity (Rome, 1985), v. A, B, North-Holland, Amsterdam, 1986, 317–324 | MR

[45] N. Tanaka, “On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables”, J. Math. Soc. Japan, 14 (1962), 397–429 | DOI | MR | Zbl

[46] J. White, “Self-linking and the Gauss integral in higher dimensions”, Amer. J. Math., 91:3 (1969), 693–728 | DOI | MR | Zbl