An estimation of the length of a convex curve in two-dimensional Aleksandrov spaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 3, pp. 221-227 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, a generalization of the Toponogov theorem about the length of a curve in a two-dimensional Riemannian manifold is proved for the case of two-dimensional Aleksandrov spaces.
@article{JMAG_2020_16_3_a1,
     author = {Alexander A. Borisenko},
     title = {An estimation of the length of a convex curve in two-dimensional {Aleksandrov} spaces},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {221--227},
     year = {2020},
     volume = {16},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_3_a1/}
}
TY  - JOUR
AU  - Alexander A. Borisenko
TI  - An estimation of the length of a convex curve in two-dimensional Aleksandrov spaces
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2020
SP  - 221
EP  - 227
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2020_16_3_a1/
LA  - en
ID  - JMAG_2020_16_3_a1
ER  - 
%0 Journal Article
%A Alexander A. Borisenko
%T An estimation of the length of a convex curve in two-dimensional Aleksandrov spaces
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2020
%P 221-227
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2020_16_3_a1/
%G en
%F JMAG_2020_16_3_a1
Alexander A. Borisenko. An estimation of the length of a convex curve in two-dimensional Aleksandrov spaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 3, pp. 221-227. http://geodesic.mathdoc.fr/item/JMAG_2020_16_3_a1/

[1] A.D. Aleksandrov, A.D. Aleksandrov selected works, Translated from Russian by S. Vakhrameyev, v. II, Intrinsic geometry of convex surfaces, ed. S. S. Kutateladze, Chapman Hall/CRC, Boca Raton, FL, 2006 | MR

[2] W. Blaschke, Kreis und Kugel, Walter de Gruyter Co., Berlin, 1956 (German) | MR | Zbl

[3] A.A. Borisenko, “Reverse isoperimetric inequality in two-dimensional Aleksandrov spaces”, Proc. Amer. Math. Soc., 145 (2017), 4465–4471 | DOI | MR | Zbl

[4] A.A. Borisenko, “About Kharkiv Mathematicians, Members of the Academy of Sciences of Ukraine”, Zh. Mat. Fiz. Anal. Geome., 15:2 (2019), 288–303 (Russian) | MR | Zbl

[5] A.A. Borisenko, K.D. Drach, “Extreme properties of curves with bounded curvature on a sphere”, J. Dyn. Control Syst., 21:3 (2015), 311–327 | DOI | MR | Zbl

[6] arXiv: 1402.2688 | MR | Zbl

[7] H. Karcher, “Umkreise und Inkreise konvexer Kurven in der spharischen und der hyperbolischen Geometrie”, Math. Ann., 177 (1968), 122–132 (German) | DOI | MR | Zbl

[8] A.D. Milka, “Unique determinacy of general closed convex surfaces in Lobachevsky space”, Ukrain. Geom. Sb., 23 (1980), 99–107 (Russian) | MR | Zbl

[9] A.V. Pogorelov, Extrinsic Geometry of Convex Surfaces, Translations of Mathematical Monographs, 35, Amer. Math. Soc., Providence, R.I., 1973 | DOI | MR | Zbl

[10] V. A. Toponogov, “Estimation of the length of a convex curve on a two-dimensional surface”, Sibirsk. Mat. Zh., 4:5 (1963), 1189–1183 (Russian) | MR