On isometric immersions of the Lobachevsky plane into 4-dimensional Euclidean space with flat normal connection
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 3, pp. 208-220 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

According to Hilbert's theorem, the Lobachevsky plane $L^2$ does not admit a regular isometric immersion into $E^3$. The question on the existence of isometric immersion of $L^2$ into $E^4$ remains open. We consider isometric immersions into $E^4$ with flat normal connection and find a fundamental system of two partial differential equations of the second order for two functions. We prove the theorems on the non-existence of global and local isometric immersions for the case under consideration.
@article{JMAG_2020_16_3_a0,
     author = {Yuriy Aminov},
     title = {On isometric immersions of the {Lobachevsky} plane into 4-dimensional {Euclidean} space with flat normal connection},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {208--220},
     year = {2020},
     volume = {16},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_3_a0/}
}
TY  - JOUR
AU  - Yuriy Aminov
TI  - On isometric immersions of the Lobachevsky plane into 4-dimensional Euclidean space with flat normal connection
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2020
SP  - 208
EP  - 220
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2020_16_3_a0/
LA  - en
ID  - JMAG_2020_16_3_a0
ER  - 
%0 Journal Article
%A Yuriy Aminov
%T On isometric immersions of the Lobachevsky plane into 4-dimensional Euclidean space with flat normal connection
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2020
%P 208-220
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2020_16_3_a0/
%G en
%F JMAG_2020_16_3_a0
Yuriy Aminov. On isometric immersions of the Lobachevsky plane into 4-dimensional Euclidean space with flat normal connection. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 3, pp. 208-220. http://geodesic.mathdoc.fr/item/JMAG_2020_16_3_a0/

[1] D.V. Bolotov, “On isometric immersions with flat normal connection of Lobachevsky space $L^n$ into Euclidean space $E^{n+m}$”, Mat. Zametki, 82:1 (2007), 11–13 (Russian) | DOI | MR | Zbl

[2] A.A. Borisenko, “On the structure of multidimensional submanifolds with metric of revolution in Euclidean space”, Zh. Mat. Fiz. Anal. Geom., 15:2 (2019), 192–202 | DOI | MR | Zbl

[3] World Sci. Publ. Co. Pte. Ltd., Singapore, 2001 | MR

[4] V.O. Gorkavyy, R. Posylaieva, “On the sharpness of one integral inequality for closed curves in $R^4$”, Zh. Mat. Fiz. Anal. Geom., 15:4 (2019), 502–509 | DOI | MR | Zbl

[5] E.R. Rozendorn, “Realization of the metric $ds^2=du^2+f(u)^2~dv^2$ into five-dimensional Euclidean space”, Dokl. Acad. Sci. Armenian SSR, 1960, 197–198 (Russian) | MR | Zbl