Certain functions defined in terms of Cantor series
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 2, pp. 174-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper is devoted to certain examples of functions whose argument is represented in terms of Cantor series.
@article{JMAG_2020_16_2_a4,
     author = {Symon Serbenyuk},
     title = {Certain functions defined in terms of {Cantor} series},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {174--189},
     year = {2020},
     volume = {16},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_2_a4/}
}
TY  - JOUR
AU  - Symon Serbenyuk
TI  - Certain functions defined in terms of Cantor series
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2020
SP  - 174
EP  - 189
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2020_16_2_a4/
LA  - en
ID  - JMAG_2020_16_2_a4
ER  - 
%0 Journal Article
%A Symon Serbenyuk
%T Certain functions defined in terms of Cantor series
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2020
%P 174-189
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2020_16_2_a4/
%G en
%F JMAG_2020_16_2_a4
Symon Serbenyuk. Certain functions defined in terms of Cantor series. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 2, pp. 174-189. http://geodesic.mathdoc.fr/item/JMAG_2020_16_2_a4/

[1] K.A. Bush, “Continuous functions without derivatives”, Amer. Math. Monthly, 59:4 (1952), 222–225 | DOI | MR | Zbl

[2] G. Cantor, “Ueber die einfachen Zahlensysteme”, Z. Math. Phys., 14 (1869), 121–128 (German)

[3] G.H. Hardy, “Weierstrass's non-differentiable function”, Trans. Amer. Math. Soc., 17 (1916), 301–325 | MR | Zbl

[4] J. Hančl, R. Tijdeman, “On the irrationality of factorial series”, Acta Arith., 118:4 (2005), 383–401 | DOI | MR | Zbl

[5] J. Gerver, “More on the differentiability of the Rieman function”, Amer. J. Math., 93 (1971), 33–41 | DOI | MR | Zbl

[6] H. Minkowski, “Zur Geometrie der Zahlen”, Gesammeine Abhandlungen, v. 2, ed. H. Minkowski, Druck und Verlag von B.G. Teubner, Leipzig–Berlin, 1911, 50–51 (German) | MR

[7] R. Salem, “On some singular monotonic functions which are stricly increasing”, Trans. Amer. Math. Soc., 53 (1943), 423–439 | DOI | MR

[8] S. Serbenyuk, “On one class of functions with complicated local structure”, Šiauliai Math. Semin., 11 (19) (2016), 75–88 | Zbl

[9] S.O. Serbenyuk, “Functions defined by functional equations systems in terms of Cantor series representation of numbers”, Naukovi Zapysky NaUKMA, 165 (2015), 34–40 (Ukrainian) https://www.researchgate.net/publication/292606546

[10] S.O. Serbenyuk, “Continuous functions with complicated local structure defined in terms of alternating Cantor series representation of numbers”, Zh. Mat. Fiz. Anal. Geom., 13 (2017), 57–81 | DOI | MR | Zbl

[11] Symon Serbenyuk, “On one application of infinite systems of functional equations in function theory”, Tatra Mt. Math. Publ., 74 (2019), 117–144 | MR | Zbl

[12] S. Serbenyuk, “Nega-$\tilde Q$-representation as a generalization of certain alternating representations of real numbers”, Bull. Taras Shevchenko Natl. Univ. Kyiv Math. Mech., 1 (35) (2016), 32–39 (Ukrainian) https://www.researchgate.net/publication/308273000

[13] S. Serbenyuk, “Representation of real numbers by the alternating Cantor series”, Integers, 17 (2017), A15 | MR | Zbl

[14] S. Serbenyuk, “On one fractal property of the Minkowski function”, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 112:2 (2018), 555–559 | DOI | MR | Zbl

[15] S.O. Serbenyuk, “Non-differentiable functions defined in terms of classical representations of real numbers”, Zh. Mat. Fiz. Anal. Geom., 14 (2018), 197–213 | DOI | MR | Zbl

[16] S. Serbenyuk, One one class of fractal sets, arXiv: 1703.05262

[17] S. Serbenyuk, More on one class of fractals, arXiv: 1706.01546

[18] S.O. Serbenyuk, “One distribution function on the Moran sets”, Azerb. J. Math., 10:2 (2020), 12–30 | MR | Zbl

[19] Liu Wen, “A nowhere differentiable continuous function constructed using Cantor series”, Math. Mag., 74:5 (2001), 400–402 | DOI | MR | Zbl

[20] W. Wunderlich, “Eine überall stetige und nirgends differenzierbare Funktion”, El. Math., 7 (1952), 73–79 (German) | MR | Zbl