@article{JMAG_2020_16_2_a4,
author = {Symon Serbenyuk},
title = {Certain functions defined in terms of {Cantor} series},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {174--189},
year = {2020},
volume = {16},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_2_a4/}
}
Symon Serbenyuk. Certain functions defined in terms of Cantor series. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 2, pp. 174-189. http://geodesic.mathdoc.fr/item/JMAG_2020_16_2_a4/
[1] K.A. Bush, “Continuous functions without derivatives”, Amer. Math. Monthly, 59:4 (1952), 222–225 | DOI | MR | Zbl
[2] G. Cantor, “Ueber die einfachen Zahlensysteme”, Z. Math. Phys., 14 (1869), 121–128 (German)
[3] G.H. Hardy, “Weierstrass's non-differentiable function”, Trans. Amer. Math. Soc., 17 (1916), 301–325 | MR | Zbl
[4] J. Hančl, R. Tijdeman, “On the irrationality of factorial series”, Acta Arith., 118:4 (2005), 383–401 | DOI | MR | Zbl
[5] J. Gerver, “More on the differentiability of the Rieman function”, Amer. J. Math., 93 (1971), 33–41 | DOI | MR | Zbl
[6] H. Minkowski, “Zur Geometrie der Zahlen”, Gesammeine Abhandlungen, v. 2, ed. H. Minkowski, Druck und Verlag von B.G. Teubner, Leipzig–Berlin, 1911, 50–51 (German) | MR
[7] R. Salem, “On some singular monotonic functions which are stricly increasing”, Trans. Amer. Math. Soc., 53 (1943), 423–439 | DOI | MR
[8] S. Serbenyuk, “On one class of functions with complicated local structure”, Šiauliai Math. Semin., 11 (19) (2016), 75–88 | Zbl
[9] S.O. Serbenyuk, “Functions defined by functional equations systems in terms of Cantor series representation of numbers”, Naukovi Zapysky NaUKMA, 165 (2015), 34–40 (Ukrainian) https://www.researchgate.net/publication/292606546
[10] S.O. Serbenyuk, “Continuous functions with complicated local structure defined in terms of alternating Cantor series representation of numbers”, Zh. Mat. Fiz. Anal. Geom., 13 (2017), 57–81 | DOI | MR | Zbl
[11] Symon Serbenyuk, “On one application of infinite systems of functional equations in function theory”, Tatra Mt. Math. Publ., 74 (2019), 117–144 | MR | Zbl
[12] S. Serbenyuk, “Nega-$\tilde Q$-representation as a generalization of certain alternating representations of real numbers”, Bull. Taras Shevchenko Natl. Univ. Kyiv Math. Mech., 1 (35) (2016), 32–39 (Ukrainian) https://www.researchgate.net/publication/308273000
[13] S. Serbenyuk, “Representation of real numbers by the alternating Cantor series”, Integers, 17 (2017), A15 | MR | Zbl
[14] S. Serbenyuk, “On one fractal property of the Minkowski function”, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 112:2 (2018), 555–559 | DOI | MR | Zbl
[15] S.O. Serbenyuk, “Non-differentiable functions defined in terms of classical representations of real numbers”, Zh. Mat. Fiz. Anal. Geom., 14 (2018), 197–213 | DOI | MR | Zbl
[16] S. Serbenyuk, One one class of fractal sets, arXiv: 1703.05262
[17] S. Serbenyuk, More on one class of fractals, arXiv: 1706.01546
[18] S.O. Serbenyuk, “One distribution function on the Moran sets”, Azerb. J. Math., 10:2 (2020), 12–30 | MR | Zbl
[19] Liu Wen, “A nowhere differentiable continuous function constructed using Cantor series”, Math. Mag., 74:5 (2001), 400–402 | DOI | MR | Zbl
[20] W. Wunderlich, “Eine überall stetige und nirgends differenzierbare Funktion”, El. Math., 7 (1952), 73–79 (German) | MR | Zbl