Biharmonic Hopf hypersurfaces of complex Euclidean space and odd dimensional sphere
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 2, pp. 161-173 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, biharmonic Hopf hypersurfaces in the complex Euclidean space $C^{n+1}$ and in the odd dimensional sphere $S^{2n+1}$ are considered. We prove that the biharmonic Hopf hypersurfaces in $C^{n+1}$ are minimal. Also, we determine that the Weingarten operator $A$ of a biharmonic pseudo-Hopf hypersurface in the unit sphere $S^{2n+1}$ has exactly two distinct principal curvatures at each point if the gradient of the mean curvature belongs to $D^\perp$, and thus is an open part of the Clifford hypersurface $S^{n_1} (1/\sqrt{2})\times S^{n_2} (1/\sqrt{2})$, where $n_1 + n_2 =2n$.
@article{JMAG_2020_16_2_a3,
     author = {Najma Mosadegh and Esmaiel Abedi},
     title = {Biharmonic {Hopf} hypersurfaces of complex {Euclidean} space and odd dimensional sphere},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {161--173},
     year = {2020},
     volume = {16},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_2_a3/}
}
TY  - JOUR
AU  - Najma Mosadegh
AU  - Esmaiel Abedi
TI  - Biharmonic Hopf hypersurfaces of complex Euclidean space and odd dimensional sphere
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2020
SP  - 161
EP  - 173
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2020_16_2_a3/
LA  - en
ID  - JMAG_2020_16_2_a3
ER  - 
%0 Journal Article
%A Najma Mosadegh
%A Esmaiel Abedi
%T Biharmonic Hopf hypersurfaces of complex Euclidean space and odd dimensional sphere
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2020
%P 161-173
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2020_16_2_a3/
%G en
%F JMAG_2020_16_2_a3
Najma Mosadegh; Esmaiel Abedi. Biharmonic Hopf hypersurfaces of complex Euclidean space and odd dimensional sphere. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 2, pp. 161-173. http://geodesic.mathdoc.fr/item/JMAG_2020_16_2_a3/

[1] E. Abedi, M. Ilmakchi, “Hopf Hypersurfaces in the complex projective space and the Sasakian space form”, TWMS J. Pure Appl. Math., 2016, 34–45 | MR

[2] K. Akutagawa, S. Maeta, “Biharmonic properly immersed submanifolds in Euclidean spaces”, Geom. Dedicata, 164 (2013), 351–355 | DOI | MR | Zbl

[3] A. Balmus, S. Montaldo, C. Oniciuc, “Classifcation results for biharmonic submanifolds in spheres”, Israel J. Math., 168 (2008), 201–220 | DOI | MR | Zbl

[4] A. Balmus, C. Oniciuc, “Biharmonic submanifolds with parallel mean curvature vector field in spheres”, J. Math. Anal. Appl., 386 (2012), 619–630 | DOI | MR | Zbl

[5] B.Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, New Jersey, 2014 | MR

[6] B.Y. Chen, “Some open problems and conjectures on submanifolds of finite type”, Soochow J. Math., 17:2 (1991), 169–188 | MR | Zbl

[7] I. Dimittric, “submanifolds of $E^m$ with harmonic mean curvature vector”, Bull. Inst. Math. Acad. Sin., 20 (1992), 53–65 | MR

[8] M. Djoric, M. Okumara, CR Submanifolds of Complex Projective Space, Springer-Verlag, Berlin, 2009 | MR

[9] J. Eells, L. Lemaire, Selected topics in harmonic maps, CBMS, 50, Amer. Math. Soc., 1983 | MR | Zbl

[10] J. Eells, J.H. Sampson, “Harmonic mappings of Riemannian manifolds”, Amer. J. Math., 86 (1964), 109–160 | DOI | MR | Zbl

[11] G.Y. Jiang, “2-Harmonic map and their first and second variational formulas”, Chinese Ann. Math. Ser. A, 7:4 (1986), 389–402 | MR | Zbl

[12] T. Hasanis, T. Vluchos, “Hypersurfaces in $E^4$ with harmonic mean curvature vector field”, Math. Nachr., 172 (1995), 145–169 | DOI | MR | Zbl

[13] Yu Fu, M. Chunhong, “Biharmonic hypersurface with constant scalar curvature in space forms”, Pacific J. Math., 294:2 (2018), 329–350 | DOI | MR

[14] Yu Fu, “Biharmonic hypersurface with three distinct principle curvatures in spheres”, Math. Nachr., 288 (2015), 763–774 | DOI | MR | Zbl

[15] Yu Fu, “Biharmonic hypersurface with three distinct principle curvatures in Euclidean 5-space”, J. Geom. Phys., 75 (2014), 113–119 | DOI | MR | Zbl

[16] Yu Fu, “Biharmonic hypersurface with three distinct principle curvatures in Euclidean space”, Tohoku Math. J., 2015, 465–479 | MR

[17] P.J. Ryan, “Homogeneity and some curvature conditions for hypersurfaces”, Tohoku Math. J., 21:2 (1969), 363–388 | MR | Zbl

[18] Shukichi Tanno, “Sasakiam manifolds with constant $\varphi$-holomorphic sectional curvature”, Tohoku. Math. Jurn., 21 (1969), 501–507 | MR