Automorphisms of cellular divisions of $2$-sphere induced by functions with isolated critical points
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 2, pp. 138-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $f:S^2\to \mathbb{R}$ be a Morse function on the $2$-sphere and $K$ be a connected component of some level set of $f$ containing at least one saddle critical point. Then $K$ is a $1$-dimensional CW-complex cellularly embedded into $S^2$, so the complement $S^2\setminus K$ is a union of open $2$-disks $D_1,\ldots, D_k$. Let $\mathcal{S}_{K}(f)$ be the group of isotopic to the identity diffeomorphisms of $S^2$ leaving invariant $K$ and also each level set $f^{-1}(c)$, $c\in\mathbb{R}$. Then each $h\in \mathcal{S}_{K}(f)$ induces a certain permutation $\sigma_{h}$ of those disks. Denote by $G = \{ \sigma_h \mid h \in \mathcal{S}_{K}(f)\}$ the group of all such permutations. We prove that $G$ is isomorphic to a finite subgroup of $SO(3)$.
@article{JMAG_2020_16_2_a2,
     author = {Anna Kravchenko and Sergiy Maksymenko},
     title = {Automorphisms of cellular divisions of $2$-sphere induced by functions with isolated critical points},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {138--160},
     year = {2020},
     volume = {16},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_2_a2/}
}
TY  - JOUR
AU  - Anna Kravchenko
AU  - Sergiy Maksymenko
TI  - Automorphisms of cellular divisions of $2$-sphere induced by functions with isolated critical points
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2020
SP  - 138
EP  - 160
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2020_16_2_a2/
LA  - en
ID  - JMAG_2020_16_2_a2
ER  - 
%0 Journal Article
%A Anna Kravchenko
%A Sergiy Maksymenko
%T Automorphisms of cellular divisions of $2$-sphere induced by functions with isolated critical points
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2020
%P 138-160
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2020_16_2_a2/
%G en
%F JMAG_2020_16_2_a2
Anna Kravchenko; Sergiy Maksymenko. Automorphisms of cellular divisions of $2$-sphere induced by functions with isolated critical points. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 2, pp. 138-160. http://geodesic.mathdoc.fr/item/JMAG_2020_16_2_a2/

[1] G.M. Adelson-Welsky, A.S. Kronrode, “Sur les lignes de niveau des fonctions continues possédant des dérivées partielles”, C. R. (Doklady) Acad. Sci. URSS (N.S.), 49 (1945), 235–237 (French) | MR

[2] E.B. Batista, J.C.F. Costa, I.S. Meza-Sarmiento, “Topological classification of circle-valued simple Morse–Bott functions”, J. Singul., 17 (2018), 388–402 | MR | Zbl

[3] A.V. Bolsinov, A.T. Fomenko, Introduction to the Topology of Integrable Hamiltonian Systems, Nauka, M., 1997 (Russian) | MR | Zbl

[4] A.V. Bolsinov, A.T. Fomenko, “Some actual unsolved problems in topology of integrable Hamiltonian systems”, Topological Classification in Theory of Hamiltonian Systems, Factorial, M., 1999, 5–23 | MR

[5] Yu. Brailov, “Algebraic properties of symmetries of atoms”, Topological Classification in Theory of Hamiltonian Systems, Factorial, M., 1999, 24–40 | MR

[6] Yu.A. Brailov, E.A. Kudryavtseva, “Stable topological nonconjugacy of Hamiltonian systems on two-dimensional surfaces”, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 72:2 (1999), 20–27 | MR

[7] A. Constantin, B. Kolev, “The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere”, Enseign. Math. (2), 40:3-4 (1994), 193–204 | MR | Zbl

[8] R. Cori, A. Machì, “Construction of maps with prescribed automorphism group”, Theoret. Comput. Sci., 21:1 (1982), 91–98 | DOI | MR | Zbl

[9] E.N. Dancer, “Degenerate critical points, homotopy indices and Morse inequalities II”, J. Reine Angew. Math., 382 (1987), 145–164 | MR | Zbl

[10] A.T. Fomenko, “A Morse theory for integrable Hamiltonian systems”, Dokl. Akad. Nauk SSSR, 287:5 (1986), 1071–1075 (Russian) | MR | Zbl

[11] A.T. Fomenko, “Symplectic topology of completely integrable Hamiltonian systems”, Uspekhi Mat. Nauk, 44:1(265) (1989), 145–173, 248 (Russian) | MR

[12] J. Franks, “Nonsingular Smale flows on $S^3$”, Topology, 24:3 (1985), 265–282 | DOI | MR | Zbl

[13] R. Frucht, “Herstellung von Graphen mit vorgegebener abstrakter Gruppe”, Compositio Math., 6 (1939), 239–250 | MR

[14] C. Jordan, “Sur les assemblages de lignes”, J. Reine Angew. Math., 70 (1869), 185–190 | MR

[15] A.A. Kadubovsky, A.V. Klimchuk, “Classification of {$O$}-topologically non-equivalent functions with color chord diagrams”, Methods Funct. Anal. Topology, 10:3 (2004), 23–32 | MR | Zbl

[16] F.C. Klein, “Lectures on the ikosahedron and the solution of equations of the fifth degree”, Classical Topics in Mathematics, 322, Cornel University Library, 1888, 21–23 | MR

[17] A. Kravchenko, S. Maksymenko, “Automorphisms of Kronrod-Reeb graphs of Morse functions on compact surfaces”, European Journal of Mathematics, arXiv: 1808.08746 | MR

[18] A.S. Kronrod, “On functions of two variables”, Uspehi Matem. Nauk (N.S.), 5:1(35) (1950), 24–134 (Russian) | MR | Zbl

[19] E.A. Kudryavtseva, “Realization of smooth functions on surfaces as height functions”, Mat. Sb., 190:3 (1999), 29–88 (Russian) | DOI | MR | Zbl

[20] E.A. Kudryavtseva, “Special framed Morse functions on surfaces”, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 2012, no. 4, 14–20 | MR | Zbl

[21] E.A. Kudryavtseva, “The topology of spaces of Morse functions on surfaces”, Math. Notes, 92:1–2 (2012), 219–236 | DOI | MR | Zbl

[22] E.A. Kudryavtseva, “On the homotopy type of spaces of Morse functions on surfaces”, Mat. Sb., 204:1 (2013), 79–118 (Russian) | DOI | MR | Zbl

[23] E.A. Kudryavtseva, A.T. Fomenko, “Symmetry groups of nice Morse functions on surfaces”, Dokl. Akad. Nauk, 446:6 (2012), 615–617 (Russian) | MR | Zbl

[24] E.A. Kudryavtseva, A.T. Fomenko, “Each finite group is a symmetry group of some map (an “Atom”-bifurcation)”, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 68:3 (2013), 148–155 | MR | Zbl

[25] E.A. Kudryavtseva, I.M. Nikonov, A.T. Fomenko, “Maximally symmetric cellular partitions of surfaces and their coverings”, Mat. Sb., 199:9 (2008), 3–96 (Russian) | DOI | MR | Zbl

[26] E.V. Kulinich, “On topologically equivalent Morse functions on surfaces”, Methods Funct. Anal. Topology, 4:1 (1998), 59–64 | MR | Zbl

[27] S. Maksymenko, B. Feshchenko, “Orbits of smooth functions on $2$-torus and their homotopy types”, Matematychni Studii, 44:1 (2015), 67–84 | MR

[28] S. Maksymenko, B. Feshchenko, “Smooth functions on 2-torus whose kronrod-reeb graph contains a cycle”, Methods Funct. Anal. Topology, 21:1 (2015), 22–40 | MR | Zbl

[29] S. Maksymenko, “Homotopy types of stabilizers and orbits of Morse functions on surfaces”, Ann. Global Anal. Geom., 29:3 (2006), 241–285 | DOI | MR | Zbl

[30] S. Maksymenko, “Functions on surfaces and incompressible subsurfaces”, Methods Funct. Anal. Topology, 16:2 (2010), 167–182 | MR | Zbl

[31] S. Maksymenko, “Deformations of functions on surfaces by isotopic to the identity diffeomorphisms”, Topology Appl. (to appear) , arXiv: 1311.3347 | MR

[32] S. Maksymenko, B. Feshchenko, “Homotopy properties of spaces of smooth functions on 2-torus”, Ukraïn. Mat. Zh., 66:9 (2014), 1205–1212 (Russian) | MR

[33] L.P. Michalak, “Realization of a graph as the Reeb graph of a Morse function on a manifold”, Topol. Methods Nonlinear Anal., 52 (2018), 749–762 | MR | Zbl

[34] E.C. Nummela, “Cayley's theorem for topological groups”, Amer. Math. Monthly, 87:3 (1980), 202–203 | DOI | MR | Zbl

[35] E.A. Polulyakh, “Kronrod–Reeb graphs of functions on noncompact two-dimensional surfaces II”, Ukrainian Math. J., 67:10 (2016), 1572–1583 | DOI | MR | Zbl

[36] A.O. Prishlyak, “Topological equivalence of smooth functions with isolated critical points on a closed surface”, Topology Appl., 119:3 (2002), 257–267 | DOI | MR | Zbl

[37] G. Reeb, “Sur certaines propriétés topologiques des variétés feuilletées”, Actualités Sci. Ind., 1183, Hermann Cie., Paris, 1952 ; Publ. Inst. Math. Univ. Strasbourg, 11, 5–89, 155–156 (French) | MR | Zbl

[38] V.V. Sharko, “Smooth and topological equivalence of functions on surfaces”, Ukraïn. Mat. Zh., 55:5 (2003), 687–700 (Russian) | MR | Zbl

[39] J. Širáň, M. Škoviera, “Orientable and nonorientable maps with given automorphism groups”, Australas. J. Combin., 7 (1993), 47–53 | MR