@article{JMAG_2020_16_2_a0,
author = {Ievgenii Afanasiev},
title = {On the correlation functions of the characteristic polynomials of real random matrices with independent entries},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {91--118},
year = {2020},
volume = {16},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_2_a0/}
}
TY - JOUR AU - Ievgenii Afanasiev TI - On the correlation functions of the characteristic polynomials of real random matrices with independent entries JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2020 SP - 91 EP - 118 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2020_16_2_a0/ LA - en ID - JMAG_2020_16_2_a0 ER -
%0 Journal Article %A Ievgenii Afanasiev %T On the correlation functions of the characteristic polynomials of real random matrices with independent entries %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2020 %P 91-118 %V 16 %N 2 %U http://geodesic.mathdoc.fr/item/JMAG_2020_16_2_a0/ %G en %F JMAG_2020_16_2_a0
Ievgenii Afanasiev. On the correlation functions of the characteristic polynomials of real random matrices with independent entries. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 2, pp. 91-118. http://geodesic.mathdoc.fr/item/JMAG_2020_16_2_a0/
[1] I. Afanasiev, “On the correlation functions of the characteristic polynomials of the sparse Hermitian random matrices”, J. Stat. Phys., 163:2 (2016), 324–356 | DOI | MR | Zbl
[2] I. Afanasiev, “On the correlation functions of the characteristic polynomials of non-Hermitian random matrices with independent entries”, J. Stat. Phys., 176:6 (2019), 1561–1582 | DOI | MR | Zbl
[3] G. Akemann, E. Kanzieper, “Integrable structure of Ginibre's ensemble of real random matrices and a Pfaffian integration theorem”, J. Stat. Phys., 129:5–6 (2007), 1159–1231 | DOI | MR | Zbl
[4] F.A. Berezin, Introduction to Superanalysis, Edited and with a foreword by A.A. Kirillov. With an appendix by V.I. Ogievetsky. Translated from the Russian by J. Niederle and R. Kotecký. Translation edited by D. Leĭtes, Math. Phys. Appl. Math., 9, D. Reidel Publishing Co., Dordrecht, 1987 | MR | Zbl
[5] C. Bordenave, D. Chafaï, “Around the circular law”, Probab. Surv., 9 (2012), 1–89 | DOI | MR | Zbl
[6] A. Borodin, C. D. Sinclair, “The Ginibre ensemble of real random matrices and its scaling limits”, Comm. Math. Phys., 291 (2009), 177–224 | DOI | MR | Zbl
[7] A. Borodin, E. Strahov, “Averages of characteristic polynomials in random matrix theory”, Comm. Pure Appl. Math., 59:2 (2006), 161–253 | DOI | MR | Zbl
[8] E. Brézin, S. Hikami, “Characteristic polynomials of random matrices”, Comm. Math. Phys., 214 (2000), 111–135 | DOI | MR | Zbl
[9] E. Brézin, S. Hikami, “Characteristic polynomials of real symmetric random matrices”, Comm. Math. Phys., 223 (2001), 363–382 | DOI | MR | Zbl
[10] G. Cipolloni, L. Erdős, D. Schröder, Edge universality for non-Hermitian random matrices, arXiv: 1908.00969v2 | MR
[11] G. Cipolloni, L. Erdős, D. Schröder, Optimal lower bound on the least singular value of the shifted Ginibre ensemble, arXiv: 1908.01653v3
[12] G. Cipolloni, L. Erdős, D. Schröder, Fluctuation around the circular law for random matrices with real entries, arXiv: 2002.02438v1 | MR
[13] M. Disertori, M. Lohmann, S. Sodin, The density of states of 1D random band matrices via a supersymmetric transfer operator, arXiv: 1810.13150v1 | MR
[14] M. Disertori, T. Spencer, M. R. Zirnbauer, “Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model”, Comm. Math. Phys., 300:2 (2010), 435–486 | DOI | MR | Zbl
[15] K. Efetov, Supersymmetry in Disorder and Chaos, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[16] K. B. Efetov, “Supersymmetry and theory of disordered metals”, Adv. in Physics, 32:1 (1983), 53–127 | DOI | MR
[17] Y. V. Fyodorov, A. D. Mirlin, “Localization in ensemble of sparse random matrices”, Phys. Rev. Lett., 67 (1991), 2049–2052 | DOI | MR
[18] Y. V. Fyodorov, E. Strahov, “An exact formula for general spectral correlation function of random Hermitian matrices. Random matrix theory”, J. Phys. A, 36:12 (2003), 3203–3214 | DOI | MR
[19] J. Ginibre, “Statistical ensembles of complex, quaternion, and real matrices”, J. Math. Phys., 6 (1965), 440–449 | DOI | MR | Zbl
[20] V. L. Girko, “The circular law”, Teor. Veroyatn. Primen., 29:4 (1984), 669–679 | MR | Zbl
[21] V. L. Girko, “The circular law: ten years later”, Random Oper. Stoch. Equ., 2:3 (1994), 235–276 | DOI | MR | Zbl
[22] V. L. Girko, “The strong circular law. Twenty years later. I”, Random Oper. Stoch. Equ., 12:1 (2004), 49–104 | DOI | MR | Zbl
[23] V. L. Girko, “The strong circular law. Twenty years later. II”, Random Oper. Stoch. Equ., 12:3 (2004), 255–312 | DOI | MR | Zbl
[24] V. L. Girko, “The circular law. Twenty years later. III”, Random Oper. Stoch. Equ., 13:1 (2005), 53–109 | DOI | MR | Zbl
[25] T. Guhr, “Supersymmetry”, The Oxford Handbook of Random Matrix Theory, eds. G. Akemann, J. Baik, P.D. Francesco, Oxford university press, 2015, 135–154 | MR
[26] P. Kopel, Linear statistics of non-Hermitian matrices matching the real or complex Ginibre ensemble to four moments, arXiv: 1510.02987v1
[27] P. Littelmann, H.-J. Sommers, M.R. Zirnbauer, “Superbosonization of invariant random matrix ensembles”, Comm. Math. Phys., 283 (2008), 343–395 | DOI | MR | Zbl
[28] M.L. Mehta, Random Matrices and the Statistical Theory of Energy Levels, Academic Press, New York–London, 1967 | MR | Zbl
[29] A.D. Mirlin, Y.V. Fyodorov, “Universality of level correlation function of sparse random matrices”, J. Phys. A, 24 (1991), 2273–2286 | DOI | MR | Zbl
[30] S. O'Rourke, D. Renfrew, “Central limit theorem for linear eigenvalue statistics of elliptic random matrices”, J. Theoret. Probab., 29 (2016), 1121–1191 | DOI | MR | Zbl
[31] L. Pastur, M. Shcherbina, “Szegö-Type theorems for one-dimensional Schrödinger operator with random potential (smooth case)”, Zh. Mat. Fiz. Anal. Geom., 14 (2018), 362–388 | DOI | MR | Zbl
[32] C. Recher, M. Kieburg, T. Guhr, M.R. Zirnbauer, “Supersymmetry approach to Wishart correlation matrices: Exact results”, J. Stat. Phys., 148:6 (2012), 981–998 | DOI | MR | Zbl
[33] M. Shcherbina, T. Shcherbina, “Transfer matrix approach to 1d random band matrices: density of states”, J. Stat. Phys., 164:6 (2016), 1233–1260 | DOI | MR | Zbl
[34] M. Shcherbina, T. Shcherbina, “Characteristic polynomials for 1D random band matrices from the localization side”, Comm. Math. Phys., 351:3 (2017), 1009–1044 | DOI | MR | Zbl
[35] M. Shcherbina, T. Shcherbina, “Universality for 1d random band matrices: sigma-model approximation”, J. Stat. Phys., 172:2 (2018), 627–664 | DOI | MR | Zbl
[36] T. Shcherbina, “On the correlation function of the characteristic polynomials of the Hermitian Wigner ensemble”, Comm. Math. Phys., 308 (2011), 1–21 | DOI | MR | Zbl
[37] T. Shcherbina, “On the correlation functions of the characteristic polynomials of the Hermitian sample covariance matrices”, Probab. Theory Related Fields, 156 (2013), 449–482 | DOI | MR | Zbl
[38] E. Strahov, Y.V. Fyodorov, “Universal results for correlations of characteristic polynomials: Riemann-Hilbert approach”, Comm. Math. Phys., 241:2-3 (2003), 343–382 | DOI | MR | Zbl
[39] T. Tao, V. Vu, “Random matrices: universality of ESDs and the circular law”, Ann. Probab., 38:5 (2010), 2023–2065 (With an appendix by Manjunath Krishnapur) | DOI | MR | Zbl
[40] T. Tao, V. Vu, “Random matrices: universality of local spectral statistics of non-Hermitian matrices”, Ann. Probab., 43:2 (2015), 782–874 | DOI | MR | Zbl
[41] E.B. Vinberg, A Course in Algebra, American Mathematical Society, Providence, RI, 2003 | MR | Zbl