A nonsingular action of the full symmetric group admits an equivalent invariant measure
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 1, pp. 46-54
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\overline{\mathfrak{S}}_\infty$ denote the set of all bijections of natural numbers. Consider an action of $\overline{\mathfrak{S}}_\infty$ on a measure space $\left( X,\mathfrak{M},\mu \right)$, where $\mu$ is an $\overline{\mathfrak{S}}_\infty$-quasi-invariant measure. We prove that there exists an $\overline{\mathfrak{S}}_\infty$-invariant measure equivalent to $\mu$.
@article{JMAG_2020_16_1_a2,
author = {Nikolay Nessonov},
title = {A nonsingular action of the full symmetric group admits an equivalent invariant measure},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {46--54},
year = {2020},
volume = {16},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_1_a2/}
}
TY - JOUR AU - Nikolay Nessonov TI - A nonsingular action of the full symmetric group admits an equivalent invariant measure JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2020 SP - 46 EP - 54 VL - 16 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2020_16_1_a2/ LA - en ID - JMAG_2020_16_1_a2 ER -
Nikolay Nessonov. A nonsingular action of the full symmetric group admits an equivalent invariant measure. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 1, pp. 46-54. http://geodesic.mathdoc.fr/item/JMAG_2020_16_1_a2/
[1] A.S. Kechris, C. Rosendal, “Turbulence, amalgamation, and generic automorphisms of homogeneous structures”, Proc. London Math. Soc., 94:2 (2007), 302–350 | DOI | MR | Zbl
[2] A. Lieberman, “The structure of certain unitary representations of infinite symmetric groups”, Trans. Amer. Math. Soc., 164 (1972), 189–198 | DOI | MR
[3] Leningrad Math. J., 1:4 (1990), 983–1014 | MR | Zbl
[4] G. Olshanski, “On semigroups related to infinite-dimensional groups”, Topics in Representation Theory, Advances in Soviet Mathematics, 2, Amer. Math. Soc., Providence, R.I., 1991, 67–101 | MR