A nonsingular action of the full symmetric group admits an equivalent invariant measure
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 1, pp. 46-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\overline{\mathfrak{S}}_\infty$ denote the set of all bijections of natural numbers. Consider an action of $\overline{\mathfrak{S}}_\infty$ on a measure space $\left( X,\mathfrak{M},\mu \right)$, where $\mu$ is an $\overline{\mathfrak{S}}_\infty$-quasi-invariant measure. We prove that there exists an $\overline{\mathfrak{S}}_\infty$-invariant measure equivalent to $\mu$.
@article{JMAG_2020_16_1_a2,
     author = {Nikolay Nessonov},
     title = {A nonsingular action of the full symmetric group admits an equivalent invariant measure},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {46--54},
     year = {2020},
     volume = {16},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_1_a2/}
}
TY  - JOUR
AU  - Nikolay Nessonov
TI  - A nonsingular action of the full symmetric group admits an equivalent invariant measure
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2020
SP  - 46
EP  - 54
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2020_16_1_a2/
LA  - en
ID  - JMAG_2020_16_1_a2
ER  - 
%0 Journal Article
%A Nikolay Nessonov
%T A nonsingular action of the full symmetric group admits an equivalent invariant measure
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2020
%P 46-54
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2020_16_1_a2/
%G en
%F JMAG_2020_16_1_a2
Nikolay Nessonov. A nonsingular action of the full symmetric group admits an equivalent invariant measure. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 1, pp. 46-54. http://geodesic.mathdoc.fr/item/JMAG_2020_16_1_a2/

[1] A.S. Kechris, C. Rosendal, “Turbulence, amalgamation, and generic automorphisms of homogeneous structures”, Proc. London Math. Soc., 94:2 (2007), 302–350 | DOI | MR | Zbl

[2] A. Lieberman, “The structure of certain unitary representations of infinite symmetric groups”, Trans. Amer. Math. Soc., 164 (1972), 189–198 | DOI | MR

[3] Leningrad Math. J., 1:4 (1990), 983–1014 | MR | Zbl

[4] G. Olshanski, “On semigroups related to infinite-dimensional groups”, Topics in Representation Theory, Advances in Soviet Mathematics, 2, Amer. Math. Soc., Providence, R.I., 1991, 67–101 | MR