Fractional boundary value problem on the half-line
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 1, pp. 27-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the semilinear fractional boundary value problem \begin{equation*} D^{\beta}\left(\frac{1}{b(x)}D^{\alpha}u\right)=a(x)u^{\sigma} \text{in } (0,\infty) \end{equation*} with the conditions $\lim_{x\rightarrow 0} x^{2-\beta} \frac{1}{b(x)}D^{\alpha}u(x) =\lim_{x\rightarrow \infty} x^{1-\beta}\frac{1}{b(x)}D^{\alpha}u(x)=0$ and $\lim_{x\rightarrow 0} x^{2-\alpha}u(x)= \lim_{x\rightarrow \infty} x^{1-\alpha}u(x)=0$, where $\beta,\alpha \in (1,2)$, $\sigma\in(-1,1)$ and $D^{\beta}, D^{\alpha}$ stand for the standard Riemann–Liouville fractional derivatives. The functions $ a,b : (0,\infty)\rightarrow \mathbb{R}$ are nonnegative continuous functions satisfying some appropriate conditions. The existence and the uniqueness of a positive solution are established. Also, a description of the global behavior of this solution is given.
@article{JMAG_2020_16_1_a1,
     author = {Bilel Khamessi},
     title = {Fractional boundary value problem on the half-line},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {27--45},
     year = {2020},
     volume = {16},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_1_a1/}
}
TY  - JOUR
AU  - Bilel Khamessi
TI  - Fractional boundary value problem on the half-line
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2020
SP  - 27
EP  - 45
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2020_16_1_a1/
LA  - en
ID  - JMAG_2020_16_1_a1
ER  - 
%0 Journal Article
%A Bilel Khamessi
%T Fractional boundary value problem on the half-line
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2020
%P 27-45
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2020_16_1_a1/
%G en
%F JMAG_2020_16_1_a1
Bilel Khamessi. Fractional boundary value problem on the half-line. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 1, pp. 27-45. http://geodesic.mathdoc.fr/item/JMAG_2020_16_1_a1/

[1] R.P. Agarwal, D. O'Regan, “Boundary value problems of nonsingular type on the semi-infinite interval”, Tohoku Math. J. (2), 51 (1999), 391–397 | DOI | MR | Zbl

[2] R.P. Agarwal, D. O'Regan, Infinite Interval Problems for Differential, Difference and Integral Equations, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001 | MR | Zbl

[3] R.P. Agarwal, D. O'Regan, S. Staněk, “Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations”, J. Math. Anal. Appl., 371 (2010), 57–68 | DOI | MR | Zbl

[4] R.P. Agarwal, M. Benchohra, S. Hamani, S. Pinelas, “Boundary value problems for differential equations involving Riemann–Liouville fractional derivative on the half line”, Dyn. Contin. Discrete Impulsive Syst. A, 18 (2011), 235–244 | MR | Zbl

[5] B. Ahmad, “Existence of solutions for irregular boundary value problems of nonlinear fractional differential equations”, Appl. Math. Lett., 23 (2010), 390–394 | DOI | MR | Zbl

[6] B. Ahmad, J.J. Nieto, “Rieman–Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions”, Bound. Value Probl., 2011 (2011), 36 | DOI | MR

[7] A. Arara, M. Benchohra, N. Hamidi, J.J. Nieto, “Fractional order differential equations on an unbounded domain”, Nonlinear Anal., 72 (2010), 580–586 | DOI | MR | Zbl

[8] I. Bachar, H. Mâagli, “Existence and global asymptotic behavior of positive solutions for nonlinear fractional Dirichlet problems on the half-line”, Abstract. Appl. Anal., 2014, 537971 | MR | Zbl

[9] Z. Bai, H. Lü, “Positive solutions for boundary value problem of nonlinear fractional differential equations”, J. Math. Anal. Appl., 311 (2005), 495–505 | DOI | MR | Zbl

[10] S. Ben Othman, S. Dridi, B. Khamessi, “Combined effects in fractional boundary value problem”, Int. J. Nonlinear Sc., 20 (2015), 154–165 | MR | Zbl

[11] R. Chemmam, A. Dhifli, H. Mâagli, “Asymptotic behavior of ground state solutions for sublinear and singular nonlinear Dirichlet problems”, Electron. J. Differ. Equ., 88 (2011), 1–12 | MR

[12] R. Chemmam, H. Mâagli, S. Masmoudi, M. Zribi, “Combined effects in nonlinear singular elliptic problems in a bounded domain”, Adv. Nonlinear Anal., 1 (2012), 301–318 | MR | Zbl

[13] Y. Chen, X. Tang, “Positive solutions of fractional differential equations at resonance on the half-line”, Bound. Value Probl., 2012 (2012), 64 | DOI | MR

[14] A. Dhifli, B. Khamessi, “Existence and boundary behavior of positive solution for a Sturm-Liouville fractional problem with p-laplacian”, J. Fix. Point Theory A, 19 (2017), 2763–2784 | DOI | MR | Zbl

[15] K. Diethelm, A.D. Freed, “On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity”, Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, eds. F. Keil, W. Mackens, H. Voss, J. Werther, Springer, Heidelberg, 1999, 217–307 | MR

[16] B. Khamessi, A. Hamiaz, “Existence and exact asymptotic behaviour of positive solutions for fractional boundary value problem with p-Laplacian operator”, J. Taibah University Sci., 13 (2019), 370–376 | DOI

[17] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006 | MR | Zbl

[18] C. Kou, H. Zhou, Y. Yan, “Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis”, Nonlinear Anal., 74 (2011), 5975–5986 | DOI | MR | Zbl

[19] Y. Liu, W. Zhang, X. Liu, “A sufficient condition for the existence of a positive solution for a nonlinear fractional differential equation with the Riemann–Liouville derivative”, Appl. Math. Lett., 25 (2012), 1986–1992 | DOI | MR | Zbl

[20] Y. Liu, “Existence of solutions of periodic-type boundary value problems for multi-term fractional differential equations”, Math. Meth. Appl. Sci., 36 (2013), 2187–2207 | DOI | MR | Zbl

[21] H. Mâagli, “Existence of positive solutions for a nonlinear fractional differential equation”, Electron. J. Differ. Equ., 2013:29 (2013), 1–5 | MR

[22] H. Mâagli, A. Dhifli, “Positive solutions to a nonlinear fractional Dirichlet problem on the half-line”, Electron. J. Differ. Equ., 2014:50 (2014), 1–7 | MR

[23] V. Marić, Regular Variation and Differential Equations, Lecture Notes in Mathematics, 1726, Springer, Berlin, 2000 | DOI | MR | Zbl

[24] I. Podlubny, “Geometric and physical interpretation of fractional integration and fractional differentiation”, Fract. Calc. Appl. Anal., 5 (2002), 367–386 | MR | Zbl

[25] T. Qiu, Z. Bai, “Existence of positive solutions for singular fractional differential equations”, Electron. J. Differ. Equ., 146 (2008), 1–9 | MR

[26] R. Seneta, Regular Varying Functions, Lectures Notes in Mathematics, 508, Springer-Verlag, Berlin, 1976 | DOI | MR

[27] X. Su, S. Zhang, “Unbounded solutions to a boundary value problem of fractional order on the half-line”, Comput. Math. Appl., 61 (2011), 1079–1087 | DOI | MR | Zbl

[28] X. Zhao, W. Ge, “Unbounded solutions for a fractional boundary value problems on the infinite interval”, Acta Appl. Math., 109 (2010), 495–505 | DOI | MR | Zbl

[29] Y. Zhao, S. Sun, Z. Han, Q. Li, “Positive solutions to boundary value problems of nonlinear fractional differential equations”, Abstract. Appl. Anal., 2011, 390543 | MR | Zbl