Toeplitz operators with radial symbols on Bergman space and Schatten-von Neumann classes
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 1, pp. 3-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper, we study spectral properties of Toeplitz operators with (quasi-) radial symbols on Bergman space. More precisely, the problem we are interested in is to understand when a given Toeplitz operator belongs to a Schatten–von Neumann class. The methods of the approximation theory (i.e., Legendre polynomials) are used to advance in this direction.
@article{JMAG_2020_16_1_a0,
     author = {Z. Bendaoud and S. Kupin and K. Toumache and B. Tour\'e and R. Zarouf},
     title = {Toeplitz operators with radial symbols on {Bergman} space and {Schatten-von} {Neumann} classes},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {3--26},
     year = {2020},
     volume = {16},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2020_16_1_a0/}
}
TY  - JOUR
AU  - Z. Bendaoud
AU  - S. Kupin
AU  - K. Toumache
AU  - B. Touré
AU  - R. Zarouf
TI  - Toeplitz operators with radial symbols on Bergman space and Schatten-von Neumann classes
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2020
SP  - 3
EP  - 26
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2020_16_1_a0/
LA  - en
ID  - JMAG_2020_16_1_a0
ER  - 
%0 Journal Article
%A Z. Bendaoud
%A S. Kupin
%A K. Toumache
%A B. Touré
%A R. Zarouf
%T Toeplitz operators with radial symbols on Bergman space and Schatten-von Neumann classes
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2020
%P 3-26
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2020_16_1_a0/
%G en
%F JMAG_2020_16_1_a0
Z. Bendaoud; S. Kupin; K. Toumache; B. Touré; R. Zarouf. Toeplitz operators with radial symbols on Bergman space and Schatten-von Neumann classes. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 16 (2020) no. 1, pp. 3-26. http://geodesic.mathdoc.fr/item/JMAG_2020_16_1_a0/

[1] R. Adams, Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press, New York–London, 1975 ; R. Adams, J. Fournier, Sobolev Spaces, Pure and Applied Mathematics, 140, 2nd ed., Elsevier/Academic Press, Amsterdam, 2003 | MR | Zbl | MR

[2] P. Ahern, Z. Cuckovic, “Products of Toeplitz operators on the Bergman space”, Illinois J. Math., 45:1 (2001), 113–121 | DOI | MR | Zbl

[3] G. Arfken, H. Weber, Mathematical Methods for Physicists, 5th ed., Harcourt/Academic Press, Burlington, MA, 2001 | MR

[4] S. Axler, “Bergman spaces and their operators”, Surveys of some recent results in operator theory, v. I, Pitman Res. Not. Math. Ser., 171, Longman Sci. Tech., Harlow, 1988, 1–50 | MR

[5] Z. Cuckovic, N. Rao, “Mellin transform, monomial symbols, and commuting Toeplitz operators”, J. Funct. Anal., 154:1 (1998), 195–214 | DOI | MR | Zbl

[6] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, Based on notes left by Harry Bateman, Reprint of the 1953 original, v. II, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981 | MR

[7] M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, U.S. Government Printing Office, Washington, DC, 1964 | MR

[8] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces, Graduate Texts in Mathematics, 199, Springer-Verlag, New York, 2000 | DOI | MR | Zbl

[9] A. Hui, Monomials in terms of Legendre polynomials, , 2015 https://math.stackexchange.com/questions/1586202/monomials-in-terms-of-legendre-polynomials/1586525#1586525

[10] I. Gohberg, S. Goldberg, M. Kaashoek, Basic Classes of Linear Operators, Birkhäuser, Basel, 2003 | MR | Zbl

[11] S. Grudsky, V. Vasilevski, “Bergman–Toeplitz operators: radial component influence”, Integr. Eq. Oper. Theory, 40 (2001), 16–33 | DOI | MR | Zbl

[12] S. Grudsky, A. Karapetyants, V. Vasilevski, “Dynamics of properties of Toeplitz operators with radial symbols”, Integr. Eq. Oper. Theory, 50:2 (2004), 217–253 | DOI | MR | Zbl

[13] B. Korenblum, K. Zhu, “An application of Tauberian theorems to Toeplitz operators”, J. Operator Theory, 33:2 (1995), 353–361 | MR | Zbl

[14] I. Louhichi, L. Zakariasy, “On Toeplitz operators with quasi-homogeneous symbols”, Arch. Math. (Basel), 85:3 (2005), 248–257 | DOI | MR | Zbl

[15] I. Louhichi, E. Strouse, L. Zakariasy, “Products of Toeplitz operators on the Bergman space”, Integr. Eq. Oper. Theory, 54:4 (2006), 525–539 | DOI | MR | Zbl

[16] I. Louhichi, F. Randriamahaleo, L. Zakariasy, “On the commutativity of a certain class of Toeplitz operators”, Concr. Oper., 2 (2015), 1–7 | MR

[17] D. Luecking, “Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives”, Amer. J. Math., 107:1 (1985), 85–111 | DOI | MR | Zbl

[18] D. Luecking, “Trace ideal criteria for Toeplitz operators”, J. Funct. Anal., 73:2 (1987), 345–368 | DOI | MR | Zbl

[19] N. Nikolski, Operators, Functions, and Systems: an Easy Reading, v. I, II, AMS Mathematical Surveys and Monographs, 92, 93, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[20] R. Schmied, personal communication, 27/02/2005 http://mathworld.wolfram.com/LegendrePolynomial.html

[21] B. Simon, Trace Ideals and Their Applications, AMS Mathematical Surveys and Monographs, 120, 2nd ed., Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[22] K. Stroethoff, “Compact Toeplitz operators on Bergman spaces”, Math. Proc. Cambridge Philos. Soc., 124:1 (1998), 151–160 | DOI | MR | Zbl

[23] D. Suárez, “The eigenvalues of limits of radial Toeplitz operators”, Bull. Lond. Math. Soc., 40:4 (2008), 631–641 | DOI | MR | Zbl

[24] N. Zorboska, “The Berezin transform and radial operators”, Proc. Amer. Math. Soc., 131:3 (2003), 793–800 (electronic) | DOI | MR | Zbl

[25] K. Zhu, Operator Theory in Function Spaces, AMS Mathematical Surveys and Monographs, 138, 2nd edition, Amer. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl

[26] K. Zhu, “Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains”, J. Operator Theory, 20:2 (1988), 329–357 | MR | Zbl