Notes on the asymptotic properties of some class of unbounded strongly continuous semigroups
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 412-424 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The abstract Cauchy problem in the Banach and Hilbert space setting is considered and the asymptotic behavior of individual orbits of corresponding $C_0$-semigroup is studied. The possibility to find uniformly stable dense subset of initial states in the case of unstable semigroups (so-called polynomial stability) is discussed. Also, the existence of the fastest growing orbit (so-called maximal asymptotics) for certain class of semigroups is studied.
@article{JMAG_2019_15_3_a7,
     author = {G. M. Sklyar and P. Polak},
     title = {Notes on the asymptotic properties of some class of unbounded strongly continuous semigroups},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {412--424},
     year = {2019},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a7/}
}
TY  - JOUR
AU  - G. M. Sklyar
AU  - P. Polak
TI  - Notes on the asymptotic properties of some class of unbounded strongly continuous semigroups
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2019
SP  - 412
EP  - 424
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a7/
LA  - en
ID  - JMAG_2019_15_3_a7
ER  - 
%0 Journal Article
%A G. M. Sklyar
%A P. Polak
%T Notes on the asymptotic properties of some class of unbounded strongly continuous semigroups
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2019
%P 412-424
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a7/
%G en
%F JMAG_2019_15_3_a7
G. M. Sklyar; P. Polak. Notes on the asymptotic properties of some class of unbounded strongly continuous semigroups. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 412-424. http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a7/

[1] W. Arendt, C.J.K. Batty, “Tauberian theorems and stability of one parameter semigroups”, Trans. Amer. Math. Soc., 306 (1988), 837–852 | DOI | MR | Zbl

[2] A. Bátkai, K.J. Engel, J. Prüss, R. Schnaubelt, “Polynomial stability of operator semigroups”, Math. Nachr., 279 (2006), 1425–1440 | DOI | MR | Zbl

[3] C.J.K. Batty, “Tauberian theorems for the Laplace–Stieltjes transform”, Trans. Amer. Math. Soc., 322 (1990), 783–804 | DOI | MR | Zbl

[4] C.J.K. Batty, T. Duyckaerts, “Non-uniform stability for bounded semi-groups on Banach spaces”, J. Evol. Eq., 8 (2008), 765–780 | DOI | MR | Zbl

[5] A. Borichev, Y. Tomilov, “Optimal polynomial decay of functions and operator semigroups”, Mathematische Annalen, 347 (2010), 455–478 | DOI | MR | Zbl

[6] E.B. Davies, One-Parameter Semigroups, London Mathematical Society Monographs, 15, Academic Press, Inc., London–New York, 1980 | MR | Zbl

[7] K. Engel, R. Nagel, One-Parametr Semigroups for Linear Evolution Equations, Graduate Texts in Math., 194, Springer-Verlag, New York, 2000 | MR

[8] Yu. Latushkin, R. Shvydkoy, “Hyperbolicity of semigroups and Fourier multipliers”, Oper. Theory Adv. Appl., 129 (2001), 341–364 | MR

[9] Yu.I. Lyubich, V.Q. Phong, “Asymptotic stability of linear differential equation in Banach space”, Studia Math., 88 (1988), 37–42 | DOI | MR | Zbl

[10] J. van Neerven, The asymptotic behaviour of semigroups of linear operators, Operator Theory: Advances and Applications, 88, Birkhäuser, Basel, 1996 | MR | Zbl

[11] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., 44, Springer-Verlag, 1983 | DOI | MR | Zbl

[12] G.M. Sklyar, V. Marchenko, “Hardy inequality and the construction of infinitesimal operators with non-basis family of eigenvectors”, J. Funct. Anal., 272 (2017), 1017–1043 | DOI | MR | Zbl

[13] G.M. Sklyar, “On the maximal asymptotics for linear differential equations in Banach spaces”, Taiwanese J. Math., 14 (2010), 2203–2217 | DOI | MR | Zbl

[14] G.M. Sklyar, “Lack of a maximal asymptotics for linear differential equations in Banach spaces”, Dokl. Akad. Nauk, 431:4 (2010), 464–467 | MR | Zbl

[15] G.M. Sklyar, “On the decay of bounded semigroup on the domain of its generator”, Vietnam J. Math., 43 (2015), 207–213 | DOI | MR | Zbl

[16] G. Sklyar, P. Polak, “On asymptotic estimation of a discrete type $C_0$-semigroups on dense sets: Application to neutral type systems”, Applied Math. Optim., 75 (2017), 175–192 | DOI | MR | Zbl

[17] G.M. Sklyar, V. Shirman, “On asymptotic stability of linear differential equation in Banach space”, Teoria Funk., Funkt. Anal. Prilozh., 37 (1982), 127–132 (Russian) | MR | Zbl

[18] J. Zabczyk, Zarys Matematycznej Teorii Sterowania, PWN, Warszawa, 1991 (Polish)

[19] H. Zwart, “Riesz basis for strongly continuous groups”, J. Diff. Eq., 249 (2010), 2397–2408 | DOI | MR | Zbl