@article{JMAG_2019_15_3_a6,
author = {Sumit Kumar Sharma and Shashank Goel},
title = {Frames in quaternionic {Hilbert} spaces},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {395--411},
year = {2019},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a6/}
}
Sumit Kumar Sharma; Shashank Goel. Frames in quaternionic Hilbert spaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 395-411. http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a6/
[1] S.L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, Oxford University Press, New York, 1995 | MR | Zbl
[2] R. Balan, P.G. Casazza, D. Edidin, “On signal reconstruction without phase”, Appl. Comp. Harm. Anal., 20 (2006), 345–356 | DOI | MR | Zbl
[3] J. Benedetto, A. Powell, O. Yilmaz, “Sigma-Delta quantization and finite frames”, IEEE Trans. Inform. Theory, 52 (2006), 1990–2005 | DOI | MR | Zbl
[4] H. Bolcskel, F. Hlawatsch, H.G. Feichtinger, “Frame-theoretic analysis of over sampled filter banks”, IEEE Trans. Signal Process., 46 (1998), 3256–3268 | DOI | MR
[5] P.G. Casazza, “The art of frame theory”, Taiwanese J. of Math., 4:2 (2000), 129–201 | DOI | MR | Zbl
[6] P.G. Casazza, G. Kutyniok, “Frames of subspaces”, Wavelets, Frames and Operator Theory (College Park, MD, 2003), Contemp. Math., 345, Amer. Math. Soc., Providence, RI, 2004, 87–113 | DOI | MR | Zbl
[7] Q. Chen, P. Dang, T. Qian, “A frame theory of Hardy spaces with the quaternionic and the Clifford algebra setting”, Adv. Appl. Clifford Algebras, 27 (2017), 1073–1101 | DOI | MR
[8] O. Christensen, “A Paley–Wiener theorem for frames”, Proc. Amer. Math. Soc., 123 (1995), 2199–2202 | DOI | MR
[9] O. Christensen, An introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2003 | DOI | MR | Zbl
[10] I. Daubechies, A. Grossmann, Y. Meyer, “Painless non-orthogonal expansions”, J. Math. Physics, 27 (1986), 1271–1283 | DOI | MR | Zbl
[11] R.J. Duffin, A.C. Schaeffer, “A class of non-harmonic Fourier series”, Trans. Amer. Math. Soc., 72 (1952), 341–366 | DOI | MR | Zbl
[12] R. Ghiloni, V. Moretti, A. Perotti, “Continuous slice functional calculus in quaternionic Hilbert spaces”, Rev. Math. Phys., 25 (2013), 1350006 | DOI | MR | Zbl
[13] R.W. Heath, A.J. Paulraj, “Linear dispersion codes for MIMO systems based on frame theory”, IEEE Trans. Signal Process., 50 (2002), 2429–2441 | DOI
[14] M. Khokulan, K. Thirulogasanthar, S. Srisatkunarajah, “Discrete frames on finite dimensional quaternion Hilbert spaces”, Proceedings of Jaffna University International Research Conference, JUICE 2014
[15] S.K. Sharma, Virender, “Dual frames on finite dimensional quaternionic Hilbert space”, Poincare J. Anal. Appl., 2 (2016), 79–88 | MR | Zbl