Frames in quaternionic Hilbert spaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 395-411 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we introduce and study the frames in separable quaternionic Hilbert spaces. The results on the existence of frames in quaternionic Hilbert spaces and a characterization of frames in quaternionic Hilbert spaces in terms of frame operator are given. Finally, a Paley–Wiener type perturbation result for the frames in a quaternionic Hilbert space has been obtained.
@article{JMAG_2019_15_3_a6,
     author = {Sumit Kumar Sharma and Shashank Goel},
     title = {Frames in quaternionic {Hilbert} spaces},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {395--411},
     year = {2019},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a6/}
}
TY  - JOUR
AU  - Sumit Kumar Sharma
AU  - Shashank Goel
TI  - Frames in quaternionic Hilbert spaces
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2019
SP  - 395
EP  - 411
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a6/
LA  - en
ID  - JMAG_2019_15_3_a6
ER  - 
%0 Journal Article
%A Sumit Kumar Sharma
%A Shashank Goel
%T Frames in quaternionic Hilbert spaces
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2019
%P 395-411
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a6/
%G en
%F JMAG_2019_15_3_a6
Sumit Kumar Sharma; Shashank Goel. Frames in quaternionic Hilbert spaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 395-411. http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a6/

[1] S.L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, Oxford University Press, New York, 1995 | MR | Zbl

[2] R. Balan, P.G. Casazza, D. Edidin, “On signal reconstruction without phase”, Appl. Comp. Harm. Anal., 20 (2006), 345–356 | DOI | MR | Zbl

[3] J. Benedetto, A. Powell, O. Yilmaz, “Sigma-Delta quantization and finite frames”, IEEE Trans. Inform. Theory, 52 (2006), 1990–2005 | DOI | MR | Zbl

[4] H. Bolcskel, F. Hlawatsch, H.G. Feichtinger, “Frame-theoretic analysis of over sampled filter banks”, IEEE Trans. Signal Process., 46 (1998), 3256–3268 | DOI | MR

[5] P.G. Casazza, “The art of frame theory”, Taiwanese J. of Math., 4:2 (2000), 129–201 | DOI | MR | Zbl

[6] P.G. Casazza, G. Kutyniok, “Frames of subspaces”, Wavelets, Frames and Operator Theory (College Park, MD, 2003), Contemp. Math., 345, Amer. Math. Soc., Providence, RI, 2004, 87–113 | DOI | MR | Zbl

[7] Q. Chen, P. Dang, T. Qian, “A frame theory of Hardy spaces with the quaternionic and the Clifford algebra setting”, Adv. Appl. Clifford Algebras, 27 (2017), 1073–1101 | DOI | MR

[8] O. Christensen, “A Paley–Wiener theorem for frames”, Proc. Amer. Math. Soc., 123 (1995), 2199–2202 | DOI | MR

[9] O. Christensen, An introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2003 | DOI | MR | Zbl

[10] I. Daubechies, A. Grossmann, Y. Meyer, “Painless non-orthogonal expansions”, J. Math. Physics, 27 (1986), 1271–1283 | DOI | MR | Zbl

[11] R.J. Duffin, A.C. Schaeffer, “A class of non-harmonic Fourier series”, Trans. Amer. Math. Soc., 72 (1952), 341–366 | DOI | MR | Zbl

[12] R. Ghiloni, V. Moretti, A. Perotti, “Continuous slice functional calculus in quaternionic Hilbert spaces”, Rev. Math. Phys., 25 (2013), 1350006 | DOI | MR | Zbl

[13] R.W. Heath, A.J. Paulraj, “Linear dispersion codes for MIMO systems based on frame theory”, IEEE Trans. Signal Process., 50 (2002), 2429–2441 | DOI

[14] M. Khokulan, K. Thirulogasanthar, S. Srisatkunarajah, “Discrete frames on finite dimensional quaternion Hilbert spaces”, Proceedings of Jaffna University International Research Conference, JUICE 2014

[15] S.K. Sharma, Virender, “Dual frames on finite dimensional quaternionic Hilbert space”, Poincare J. Anal. Appl., 2 (2016), 79–88 | MR | Zbl