@article{JMAG_2019_15_3_a5,
author = {Sampa Pahan and Buddhadev Pal},
title = {On {Einstein} sequential warped product spaces},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {379--394},
year = {2019},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a5/}
}
Sampa Pahan; Buddhadev Pal. On Einstein sequential warped product spaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 379-394. http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a5/
[1] R. Bishop, B. O'Neill, “Manifolds of negative curvature”, Trans. Amer. Math. Soc., 145 (1969), 1–49 | DOI | MR | Zbl
[2] K.A. Bronnikov, M.A. Grebeniuk, V.D. Ivashchuk, V.N. Melnikov, “Integrable Multidimensional Cosmology for Intersecting p-Branes”, Gravit. Cosmol., 3 (1997), 105–112 | Zbl
[3] A.S. Diallo, “Compact Einstein warped product manifolds”, Afr. Mat., 25:2 (2014), 267–270 | DOI | MR | Zbl
[4] D. Dumitru, “On Compact Einstein Warped Products”, Ann. Spiru Haret Univ. Math.-Inform. Ser., 7:1 (2011), 21–26 | MR | Zbl
[5] U. Guenther, P. Moniz, A. Zhuk, “Nonlinear multidimensional cosmological models with form fields: stabilization of extra dimensions and the cosmological constant problem”, Phys. Rev. D, 68 (2003), 044010 | DOI | MR | Zbl
[6] D. Kim, Y. Kim, “Compact Einstein warped product spaces with nonpositive scalar curvature”, Proc. Amer. Math. Soc., 131:8 (2003), 2573–2576 | DOI | MR | Zbl
[7] D.S. Kim, “Compact Einstein warped product spaces”, Trends Math. (Inf. Cent. Math. Sci.), 5:2 (2002), 1–5 | MR
[8] S. Kim, “Warped products and Einstein metrics”, J. Phys. A, 39:20 (2006), 1–15 | DOI | MR
[9] B. O'Neill, Semi-Riemannian Geometry. With Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983 | MR | Zbl
[10] S. Pahan, B. Pal, A. Bhattacharyya, “On Einstein warped products with a quarter-symmetric connection”, Int. J. Geom. Methods Mod. Phys., 14:4 (2017), 1750050 | DOI | MR | Zbl
[11] S. Pahan, B. Pal, A. Bhattacharyya, “On Ricci flat warped products with a quarter-symmetric connection”, J. Geom., 107 (2016), 627–634 | DOI | MR | Zbl
[12] Q. Qu, Y. Wang, “Multiply warped products with a quarter-symmetric connection”, J. Math. Anal. Appl., 431 (2015), 955–987 | DOI | MR | Zbl
[13] M. Obata, “Certain conditions for a Riemannian manifold to be isometric with a sphere”, J. Math. Soc. Japan, 14 (1962), 333–340 | DOI | MR | Zbl
[14] S. Shenway, A note in sequential warped product manifolds, arXiv: 1506.06056v1
[15] M. Rimoldi, “A Remark on Einstein warped products”, Pacific J. Math., 252:1 (2011), 207–218 | DOI | MR | Zbl
[16] P.S. Wesson, “A new approach to scale-invariant gravity”, Astron. Astrophys., 119:1 (1983), 145–152 | MR