On Einstein sequential warped product spaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 379-394 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, Einstein sequential warped product spaces are studied. Here we prove that if $M$ is an Einstein sequential warped product space with negative scalar curvature, then the warping functions are constants. We find out some obstructions for the existence of such Einstein sequential warped product spaces. We also show that if $\bar{M}=(M_1\times_f I_{M_2})\times_{\bar{f}} I_{M_3}$ is a sequential warped product of a complete connected $(n-2)$-dimensional Riemannian manifold $M_1$ and one-dimensional Riemannian manifolds $I_{M_2}$ and $I_{M_3}$ with some certain conditions, then $(M_1, g_1)$ becomes a $(n-2)$-dimensional sphere of radius $\rho=\frac{n-2}{\sqrt{r^1+\alpha}}.$ Some examples of the Einstein sequential warped product space are given in Section 3.
@article{JMAG_2019_15_3_a5,
     author = {Sampa Pahan and Buddhadev Pal},
     title = {On {Einstein} sequential warped product spaces},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {379--394},
     year = {2019},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a5/}
}
TY  - JOUR
AU  - Sampa Pahan
AU  - Buddhadev Pal
TI  - On Einstein sequential warped product spaces
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2019
SP  - 379
EP  - 394
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a5/
LA  - en
ID  - JMAG_2019_15_3_a5
ER  - 
%0 Journal Article
%A Sampa Pahan
%A Buddhadev Pal
%T On Einstein sequential warped product spaces
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2019
%P 379-394
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a5/
%G en
%F JMAG_2019_15_3_a5
Sampa Pahan; Buddhadev Pal. On Einstein sequential warped product spaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 379-394. http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a5/

[1] R. Bishop, B. O'Neill, “Manifolds of negative curvature”, Trans. Amer. Math. Soc., 145 (1969), 1–49 | DOI | MR | Zbl

[2] K.A. Bronnikov, M.A. Grebeniuk, V.D. Ivashchuk, V.N. Melnikov, “Integrable Multidimensional Cosmology for Intersecting p-Branes”, Gravit. Cosmol., 3 (1997), 105–112 | Zbl

[3] A.S. Diallo, “Compact Einstein warped product manifolds”, Afr. Mat., 25:2 (2014), 267–270 | DOI | MR | Zbl

[4] D. Dumitru, “On Compact Einstein Warped Products”, Ann. Spiru Haret Univ. Math.-Inform. Ser., 7:1 (2011), 21–26 | MR | Zbl

[5] U. Guenther, P. Moniz, A. Zhuk, “Nonlinear multidimensional cosmological models with form fields: stabilization of extra dimensions and the cosmological constant problem”, Phys. Rev. D, 68 (2003), 044010 | DOI | MR | Zbl

[6] D. Kim, Y. Kim, “Compact Einstein warped product spaces with nonpositive scalar curvature”, Proc. Amer. Math. Soc., 131:8 (2003), 2573–2576 | DOI | MR | Zbl

[7] D.S. Kim, “Compact Einstein warped product spaces”, Trends Math. (Inf. Cent. Math. Sci.), 5:2 (2002), 1–5 | MR

[8] S. Kim, “Warped products and Einstein metrics”, J. Phys. A, 39:20 (2006), 1–15 | DOI | MR

[9] B. O'Neill, Semi-Riemannian Geometry. With Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983 | MR | Zbl

[10] S. Pahan, B. Pal, A. Bhattacharyya, “On Einstein warped products with a quarter-symmetric connection”, Int. J. Geom. Methods Mod. Phys., 14:4 (2017), 1750050 | DOI | MR | Zbl

[11] S. Pahan, B. Pal, A. Bhattacharyya, “On Ricci flat warped products with a quarter-symmetric connection”, J. Geom., 107 (2016), 627–634 | DOI | MR | Zbl

[12] Q. Qu, Y. Wang, “Multiply warped products with a quarter-symmetric connection”, J. Math. Anal. Appl., 431 (2015), 955–987 | DOI | MR | Zbl

[13] M. Obata, “Certain conditions for a Riemannian manifold to be isometric with a sphere”, J. Math. Soc. Japan, 14 (1962), 333–340 | DOI | MR | Zbl

[14] S. Shenway, A note in sequential warped product manifolds, arXiv: 1506.06056v1

[15] M. Rimoldi, “A Remark on Einstein warped products”, Pacific J. Math., 252:1 (2011), 207–218 | DOI | MR | Zbl

[16] P.S. Wesson, “A new approach to scale-invariant gravity”, Astron. Astrophys., 119:1 (1983), 145–152 | MR