Solutions of the Frobenius coupled KP equation
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 369-378 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we firstly construct the coupled Schur function solution of the Frobenius coupled Kadomtsev–Petviashvili (KP) hierarchy as a generalization of the Schur function. The Frobenius coupled KP hierarchy contains a Frobenius coupled KP equation which has a potential application in the theory of two-layer shallow water waves. We further derive some regular Wronskian solution and non-Wronskian solutions of the Frobenius coupled KP equation.
@article{JMAG_2019_15_3_a4,
     author = {Chuanzhong Li and Huijuan Zhou},
     title = {Solutions of the {Frobenius} coupled {KP~equation}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {369--378},
     year = {2019},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a4/}
}
TY  - JOUR
AU  - Chuanzhong Li
AU  - Huijuan Zhou
TI  - Solutions of the Frobenius coupled KP equation
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2019
SP  - 369
EP  - 378
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a4/
LA  - en
ID  - JMAG_2019_15_3_a4
ER  - 
%0 Journal Article
%A Chuanzhong Li
%A Huijuan Zhou
%T Solutions of the Frobenius coupled KP equation
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2019
%P 369-378
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a4/
%G en
%F JMAG_2019_15_3_a4
Chuanzhong Li; Huijuan Zhou. Solutions of the Frobenius coupled KP equation. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 369-378. http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a4/

[1] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems — Classical Theory and Quantum Theory (Kyoto, 1981), World Sci. Publishing, Singapore, 1983, 39–119 | MR

[2] I.A.B. Strachan, D.F. Zuo, “Integrability of the Frobenius algebra-valued Kadomtsev–Petviashvili hierarchy”, J. Math. Phys., 56 (2015), 113509 | DOI | MR | Zbl

[3] C.Z. Li, J.S. He, “The extended $Z_N$-Toda hierarchy”, Theor. Math. Phys., 185 (2015), 1614–1635 | DOI | MR | Zbl

[4] C.Z. Li, “Gauge transformation and symmetries of the commutative multi-component BKP hierarchy”, J. Phys. A, 49 (2016), 015203 | DOI | MR | Zbl

[5] X.P. Yang, C.Z. Li, “Bäcklund transformations of $Z_n$-Sine-Gordon systems”, Modern Phys. Lett. B, 31 (2017), 1750189 | DOI | MR

[6] H.F. Wang, C.Z. Li, Affine Weyl group symmetries of Frobenius Painlevé equations, submitted | MR

[7] R. Vein, P. Dale, Determinants and Their Applications in Mathematical Physics, Springer-Verlag, New York, 1999 | MR | Zbl