@article{JMAG_2019_15_3_a4,
author = {Chuanzhong Li and Huijuan Zhou},
title = {Solutions of the {Frobenius} coupled {KP~equation}},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {369--378},
year = {2019},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a4/}
}
Chuanzhong Li; Huijuan Zhou. Solutions of the Frobenius coupled KP equation. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 369-378. http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a4/
[1] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems — Classical Theory and Quantum Theory (Kyoto, 1981), World Sci. Publishing, Singapore, 1983, 39–119 | MR
[2] I.A.B. Strachan, D.F. Zuo, “Integrability of the Frobenius algebra-valued Kadomtsev–Petviashvili hierarchy”, J. Math. Phys., 56 (2015), 113509 | DOI | MR | Zbl
[3] C.Z. Li, J.S. He, “The extended $Z_N$-Toda hierarchy”, Theor. Math. Phys., 185 (2015), 1614–1635 | DOI | MR | Zbl
[4] C.Z. Li, “Gauge transformation and symmetries of the commutative multi-component BKP hierarchy”, J. Phys. A, 49 (2016), 015203 | DOI | MR | Zbl
[5] X.P. Yang, C.Z. Li, “Bäcklund transformations of $Z_n$-Sine-Gordon systems”, Modern Phys. Lett. B, 31 (2017), 1750189 | DOI | MR
[6] H.F. Wang, C.Z. Li, Affine Weyl group symmetries of Frobenius Painlevé equations, submitted | MR
[7] R. Vein, P. Dale, Determinants and Their Applications in Mathematical Physics, Springer-Verlag, New York, 1999 | MR | Zbl