Simple Morse functions on an oriented surface with boundary
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 354-368 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, smooth functions with non-degenerate critical points on a smooth compact surface with boundary are considered. Firstly, it is shown that these functions are topologically equivalent to $m$-functions. The equipped Reeb graph is used to describe their topological structure. Secondly, the authors characterize the topological structure of all simple functions with at most 5 critical points. And finally, a formula for the genus of the surface based on the equipped Reeb graph is obtained.
@article{JMAG_2019_15_3_a3,
     author = {Bohdana Hladysh and Alexandr Prishlyak},
     title = {Simple {Morse} functions on an oriented surface with boundary},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {354--368},
     year = {2019},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a3/}
}
TY  - JOUR
AU  - Bohdana Hladysh
AU  - Alexandr Prishlyak
TI  - Simple Morse functions on an oriented surface with boundary
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2019
SP  - 354
EP  - 368
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a3/
LA  - en
ID  - JMAG_2019_15_3_a3
ER  - 
%0 Journal Article
%A Bohdana Hladysh
%A Alexandr Prishlyak
%T Simple Morse functions on an oriented surface with boundary
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2019
%P 354-368
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a3/
%G en
%F JMAG_2019_15_3_a3
Bohdana Hladysh; Alexandr Prishlyak. Simple Morse functions on an oriented surface with boundary. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 354-368. http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a3/

[1] A.V. Bolsinov, A.T. Fomenko, Integrable Hamiltonian systems. Geometry, topology and classification, Chapman Hall/CRC, Boca Raton, FL, 2004 | MR

[2] M. Borodzik, A. Nemethi, A. Ranicki, “Morse theory for manifolds with boundary”, Algebr. Geom. Topol., 16 (2016), 971–1023 | DOI | MR | Zbl

[3] Ukrainian Math. J., 68:1 (2016), 29–40 | DOI | MR

[4] B.I. Hladysh, A.O. Prishlyak, “Topology of functions with isolated critical points on the boundary of a 2-dimensional manifold”, SIGMA Symmetry Integrability Geom. Methods Appl., 13 (2017), 050, 17 pp. | MR | Zbl

[5] I.A. Iurchuk, “Properties of a pseudo-harmonic function on closed domain”, Proc. Intern. Geom. Center, 7:4 (2014), 50–59

[6] A. Jankowski, R. Rubinsztein, “Functions with non-degenerate critical points on manifolds with boundary”, Comment. Math. Prace Mat., 16 (1972), 99–112 | MR | Zbl

[7] A.An. Kadubovskyi, “On the number of topologically non-equivalent functions with one degenerated saddle critical point on two-dimensional sphere II”, Proc. Intern. Geom. Center, 8:1 (2015), 47–62 (Russian)

[8] P.E. Konner, E.E. Floid, Differentiable Periodic Maps, Springer-Verlag, Berlin–Gottinberg–Heidelberg, 1964 | MR

[9] A.S. Kronrod, “On functions of two variables”, Uspehi Matem. Nauk (N.S.), 5:1(35) (1950), 24–134 (Russian) | MR | Zbl

[10] Ukrainian Math. J., 51:8 (1999), 1175–1281 | DOI | MR

[11] M. Morse, The calculus of variations in the large, Colloquium Publications, 18, Amer. Math. Soc., Providence, RI, 1934 | DOI | MR | Zbl

[12] A.O. Polulyakh, “On conjugate pseudo-harmonic functions”, Proceedings of Institute of Mathematics of NAS of Ukraine, 2:2 (2009), 505–517 | MR | Zbl

[13] A.O. Prishlyak, “Topological equivalence of smooth functions with isolated critical points on a closed surface”, Topology Appl., 119:3 (2002), 257–267 | DOI | MR | Zbl

[14] A.O. Prishlyak, Topological properties of functions on two and three dimensional manifolds, Palmarium. Academic Publishing, Saarbrücken, 2012 (Russian)

[15] A.O. Prishlyak, Topology of manifolds. Tutorial, Taras Shevchenko National University of Kyiv, Kyiv, 2013 (Ukrainian)

[16] A.O. Prishlyak, K.I. Prishlyak, K.I. Mishchenko, N.V. Lukova, “Classification of simple m-functions onoriented surfaces”, J. Numer. Appl. Math., 104:1 (2011), 1–12 (Ukrainian)

[17] G. Reeb, “Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique”, C. R. Acad. Sci. Paris, 222 (1946), 847–849 (French) | MR | Zbl

[18] Ukrainian Math. J., 55:5 (2003), 832–846 | DOI | MR | Zbl

[19] A.H. Wallace, Differential topology: First steps, W.A. Benjamin, Inc., New York–Amsterdam, 1968 | MR | Zbl