@article{JMAG_2019_15_3_a3,
author = {Bohdana Hladysh and Alexandr Prishlyak},
title = {Simple {Morse} functions on an oriented surface with boundary},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {354--368},
year = {2019},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a3/}
}
TY - JOUR AU - Bohdana Hladysh AU - Alexandr Prishlyak TI - Simple Morse functions on an oriented surface with boundary JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2019 SP - 354 EP - 368 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a3/ LA - en ID - JMAG_2019_15_3_a3 ER -
Bohdana Hladysh; Alexandr Prishlyak. Simple Morse functions on an oriented surface with boundary. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 354-368. http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a3/
[1] A.V. Bolsinov, A.T. Fomenko, Integrable Hamiltonian systems. Geometry, topology and classification, Chapman Hall/CRC, Boca Raton, FL, 2004 | MR
[2] M. Borodzik, A. Nemethi, A. Ranicki, “Morse theory for manifolds with boundary”, Algebr. Geom. Topol., 16 (2016), 971–1023 | DOI | MR | Zbl
[3] Ukrainian Math. J., 68:1 (2016), 29–40 | DOI | MR
[4] B.I. Hladysh, A.O. Prishlyak, “Topology of functions with isolated critical points on the boundary of a 2-dimensional manifold”, SIGMA Symmetry Integrability Geom. Methods Appl., 13 (2017), 050, 17 pp. | MR | Zbl
[5] I.A. Iurchuk, “Properties of a pseudo-harmonic function on closed domain”, Proc. Intern. Geom. Center, 7:4 (2014), 50–59
[6] A. Jankowski, R. Rubinsztein, “Functions with non-degenerate critical points on manifolds with boundary”, Comment. Math. Prace Mat., 16 (1972), 99–112 | MR | Zbl
[7] A.An. Kadubovskyi, “On the number of topologically non-equivalent functions with one degenerated saddle critical point on two-dimensional sphere II”, Proc. Intern. Geom. Center, 8:1 (2015), 47–62 (Russian)
[8] P.E. Konner, E.E. Floid, Differentiable Periodic Maps, Springer-Verlag, Berlin–Gottinberg–Heidelberg, 1964 | MR
[9] A.S. Kronrod, “On functions of two variables”, Uspehi Matem. Nauk (N.S.), 5:1(35) (1950), 24–134 (Russian) | MR | Zbl
[10] Ukrainian Math. J., 51:8 (1999), 1175–1281 | DOI | MR
[11] M. Morse, The calculus of variations in the large, Colloquium Publications, 18, Amer. Math. Soc., Providence, RI, 1934 | DOI | MR | Zbl
[12] A.O. Polulyakh, “On conjugate pseudo-harmonic functions”, Proceedings of Institute of Mathematics of NAS of Ukraine, 2:2 (2009), 505–517 | MR | Zbl
[13] A.O. Prishlyak, “Topological equivalence of smooth functions with isolated critical points on a closed surface”, Topology Appl., 119:3 (2002), 257–267 | DOI | MR | Zbl
[14] A.O. Prishlyak, Topological properties of functions on two and three dimensional manifolds, Palmarium. Academic Publishing, Saarbrücken, 2012 (Russian)
[15] A.O. Prishlyak, Topology of manifolds. Tutorial, Taras Shevchenko National University of Kyiv, Kyiv, 2013 (Ukrainian)
[16] A.O. Prishlyak, K.I. Prishlyak, K.I. Mishchenko, N.V. Lukova, “Classification of simple m-functions onoriented surfaces”, J. Numer. Appl. Math., 104:1 (2011), 1–12 (Ukrainian)
[17] G. Reeb, “Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique”, C. R. Acad. Sci. Paris, 222 (1946), 847–849 (French) | MR | Zbl
[18] Ukrainian Math. J., 55:5 (2003), 832–846 | DOI | MR | Zbl
[19] A.H. Wallace, Differential topology: First steps, W.A. Benjamin, Inc., New York–Amsterdam, 1968 | MR | Zbl