@article{JMAG_2019_15_3_a2,
author = {S. L. Gefter and A. L. Piven},
title = {Implicit linear nonhomogeneous difference equation in {Banach} and locally convex spaces},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {336--353},
year = {2019},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a2/}
}
TY - JOUR AU - S. L. Gefter AU - A. L. Piven TI - Implicit linear nonhomogeneous difference equation in Banach and locally convex spaces JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2019 SP - 336 EP - 353 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a2/ LA - en ID - JMAG_2019_15_3_a2 ER -
%0 Journal Article %A S. L. Gefter %A A. L. Piven %T Implicit linear nonhomogeneous difference equation in Banach and locally convex spaces %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2019 %P 336-353 %V 15 %N 3 %U http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a2/ %G en %F JMAG_2019_15_3_a2
S. L. Gefter; A. L. Piven. Implicit linear nonhomogeneous difference equation in Banach and locally convex spaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 336-353. http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a2/
[1] Y.A. Abramovich, C.D. Aliprantis, Problems in Operator Theory, Graduate Studies in Mathematics, 51, American Mathematical Society, Providence, RI, 2002 | MR | Zbl
[2] A.G. Baskakov, “On the invertibility of linear difference operators with constant coefficients”, Russian Math. (Iz. VUZ), 45:5 (2001), 1–9 | MR | Zbl
[3] M. Benabdallakh, A.G. Rutkas, A.A. Solov'ev, “Application of asymptotic expansions to the investigation of an infinite system of equations $Ax_{n+1} + Bx_n = f_n$ in a Banach space”, J. Soviet Math., 48:2 (1990), 124–130 | DOI | MR | Zbl
[4] C. Bessaga, A. Pełczyński, “On a class of $B\sb 0$-spaces”, Bull. Acad. Polon. Sci. Cl. III, 5 (1957), 375–377 | MR | Zbl
[5] M. Bondarenko, A. Rutkas, “On a class of implicit difference equations”, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 1998, no. 7, 11–15 | MR | Zbl
[6] N. Bourbaki, Éléments de mathématique. XVIII. Premiére partie: Les structures fondamentales de l'analyse. Livre V: Espaces vectoriels topologiques. Chapitre III: Espaces d'applications linéaires continues. Chapitre IV: La dualité dans les espaces vectoriels topologiques. Chapitre V: Espaces hilbertiens, Actualités Sci. Ind., 1229, Hermann Cie, Paris, 1955 (French) | MR
[7] A.Ya. Dorogovtsev, Periodic and Stationary Regimes for Infinite-Dimensional Deterministic and Stochastic Dynamical Systems, Vyshcha Shkola, Kiev, 1992 (Russian) | MR
[8] R.E. Edwards, Functional Analysis. Theory and applications, Hort, Rinehart and Winston, New York–Toronto–London, 1965 | MR
[9] V.I. Fomin, “Cramer operator vector rule for solution of system of linear vector equations in a Banach space”, Vest. Tomsk. Gos. Univ., 7:2 (2002), 237–238 (Russian) | MR
[10] S.L. Gefter, A.L. Piven, “Implicit linear difference equation in Fréchet spaces”, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 2017, no. 6, 3–8 (Russian) | DOI | MR | Zbl
[11] I. Gohberg, S. Goldberg, M.A. Kaashoek, Classes of Linear Operators, v. I, Operator Theory: Advances and Applications, 49, Birkhäuser Verlag, Basel, 1990 | MR | Zbl
[12] J.W. Helton, “Discrete time systems, operator models and scattering theory”, J. Functional Analysis, 16:1 (1974), 15–38 | DOI | MR | Zbl
[13] M.F. Gorodniĭ, O.V. Vyatchaninov, “On the boundedness of one recurrent sequence in a Banach space”, Ukrainian Math. J., 61:9 (2009), 1529–1532 | DOI | MR | Zbl
[14] V.M. Kadets, A Course in Functional Analysis, V.N. Karazin Kharkiv National University, Kharkiv, 2006 (Russian) | MR | Zbl
[15] G. Köthe, Topological Vector Spaces, v. I, Springer-Verlag New York Inc., New York, 1969 | MR | Zbl
[16] G. Köthe, Topological Vector Spaces, v. II, Springer-Verlag, New York–Berlin, 1979 | MR | Zbl
[17] V. Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Operator Theory: Advances and Applications, 139, Birkhäuser Verlag, Basel, 2007 | MR | Zbl
[18] L. Narici, E. Beckenstein, Topological Vector Spaces, Pure and Applied Mathematics (Boca Raton), 296, CRC Press, Boca Raton, FL, 2011 | MR | Zbl
[19] D.A. Raĭkov, “Closed Graph and Open Mapping Theorems”, Appendix in Russian transl. of [1]: A.P. Robertson, W. J. Robertson, Topological Vector Spaces, Edited and appendices by D.A. Raĭkov, Mir, M., 1967, 223–237 (Russian) | MR
[20] A.P. Robertson, W. Robertson, Topological Vector Spaces, Cambridge Tracts in Mathematics and Mathematical Physics, 53, Cambridge University Press, New York, 1964 | MR | Zbl
[21] H.H. Schaefer, Topological Vector Spaces, Graduate Texts in Mathematics, 3, Springer-Verlag, New York–Berlin, 1971 | DOI | MR | Zbl
[22] V.E. Slusarchuk, Stability of Solutions of Difference Equations in a Banach Space, Vyd-vo UDUVH, Rivne, 2003 (Ukrainian)
[23] L.A. Vlasenko, “Evolutionary Models with Implicit and Degenerate Differential Equations”, Sistemnyie Technologii, Dnepropetrovsk, 2006 (Russian)