Implicit linear nonhomogeneous difference equation in Banach and locally convex spaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 336-353 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The subjects of this work are the implicit linear difference equations $Ax_{n+1}+Bx_n=g_n$ and $Ax_{n+1}=x_n-f_n, n=0,1,2,\ldots$, where $A$ and $B$ are continuous operators acting in certain locally convex spaces. The existence and uniqueness conditions, along with explicit formulas, are obtained for solutions of these equations. As an application of the general theory produced this way, the equation $Ax_{n+1}=x_n-f_n$ in the space $\mathbb{R}^{\infty}$ of finite sequences and in the space $\mathbb{R}^M$, where $M$ is an arbitrary set, has been studied.
@article{JMAG_2019_15_3_a2,
     author = {S. L. Gefter and A. L. Piven},
     title = {Implicit linear nonhomogeneous difference equation in {Banach} and locally convex spaces},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {336--353},
     year = {2019},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a2/}
}
TY  - JOUR
AU  - S. L. Gefter
AU  - A. L. Piven
TI  - Implicit linear nonhomogeneous difference equation in Banach and locally convex spaces
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2019
SP  - 336
EP  - 353
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a2/
LA  - en
ID  - JMAG_2019_15_3_a2
ER  - 
%0 Journal Article
%A S. L. Gefter
%A A. L. Piven
%T Implicit linear nonhomogeneous difference equation in Banach and locally convex spaces
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2019
%P 336-353
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a2/
%G en
%F JMAG_2019_15_3_a2
S. L. Gefter; A. L. Piven. Implicit linear nonhomogeneous difference equation in Banach and locally convex spaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 336-353. http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a2/

[1] Y.A. Abramovich, C.D. Aliprantis, Problems in Operator Theory, Graduate Studies in Mathematics, 51, American Mathematical Society, Providence, RI, 2002 | MR | Zbl

[2] A.G. Baskakov, “On the invertibility of linear difference operators with constant coefficients”, Russian Math. (Iz. VUZ), 45:5 (2001), 1–9 | MR | Zbl

[3] M. Benabdallakh, A.G. Rutkas, A.A. Solov'ev, “Application of asymptotic expansions to the investigation of an infinite system of equations $Ax_{n+1} + Bx_n = f_n$ in a Banach space”, J. Soviet Math., 48:2 (1990), 124–130 | DOI | MR | Zbl

[4] C. Bessaga, A. Pełczyński, “On a class of $B\sb 0$-spaces”, Bull. Acad. Polon. Sci. Cl. III, 5 (1957), 375–377 | MR | Zbl

[5] M. Bondarenko, A. Rutkas, “On a class of implicit difference equations”, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 1998, no. 7, 11–15 | MR | Zbl

[6] N. Bourbaki, Éléments de mathématique. XVIII. Premiére partie: Les structures fondamentales de l'analyse. Livre V: Espaces vectoriels topologiques. Chapitre III: Espaces d'applications linéaires continues. Chapitre IV: La dualité dans les espaces vectoriels topologiques. Chapitre V: Espaces hilbertiens, Actualités Sci. Ind., 1229, Hermann Cie, Paris, 1955 (French) | MR

[7] A.Ya. Dorogovtsev, Periodic and Stationary Regimes for Infinite-Dimensional Deterministic and Stochastic Dynamical Systems, Vyshcha Shkola, Kiev, 1992 (Russian) | MR

[8] R.E. Edwards, Functional Analysis. Theory and applications, Hort, Rinehart and Winston, New York–Toronto–London, 1965 | MR

[9] V.I. Fomin, “Cramer operator vector rule for solution of system of linear vector equations in a Banach space”, Vest. Tomsk. Gos. Univ., 7:2 (2002), 237–238 (Russian) | MR

[10] S.L. Gefter, A.L. Piven, “Implicit linear difference equation in Fréchet spaces”, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki, 2017, no. 6, 3–8 (Russian) | DOI | MR | Zbl

[11] I. Gohberg, S. Goldberg, M.A. Kaashoek, Classes of Linear Operators, v. I, Operator Theory: Advances and Applications, 49, Birkhäuser Verlag, Basel, 1990 | MR | Zbl

[12] J.W. Helton, “Discrete time systems, operator models and scattering theory”, J. Functional Analysis, 16:1 (1974), 15–38 | DOI | MR | Zbl

[13] M.F. Gorodniĭ, O.V. Vyatchaninov, “On the boundedness of one recurrent sequence in a Banach space”, Ukrainian Math. J., 61:9 (2009), 1529–1532 | DOI | MR | Zbl

[14] V.M. Kadets, A Course in Functional Analysis, V.N. Karazin Kharkiv National University, Kharkiv, 2006 (Russian) | MR | Zbl

[15] G. Köthe, Topological Vector Spaces, v. I, Springer-Verlag New York Inc., New York, 1969 | MR | Zbl

[16] G. Köthe, Topological Vector Spaces, v. II, Springer-Verlag, New York–Berlin, 1979 | MR | Zbl

[17] V. Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Operator Theory: Advances and Applications, 139, Birkhäuser Verlag, Basel, 2007 | MR | Zbl

[18] L. Narici, E. Beckenstein, Topological Vector Spaces, Pure and Applied Mathematics (Boca Raton), 296, CRC Press, Boca Raton, FL, 2011 | MR | Zbl

[19] D.A. Raĭkov, “Closed Graph and Open Mapping Theorems”, Appendix in Russian transl. of [1]: A.P. Robertson, W. J. Robertson, Topological Vector Spaces, Edited and appendices by D.A. Raĭkov, Mir, M., 1967, 223–237 (Russian) | MR

[20] A.P. Robertson, W. Robertson, Topological Vector Spaces, Cambridge Tracts in Mathematics and Mathematical Physics, 53, Cambridge University Press, New York, 1964 | MR | Zbl

[21] H.H. Schaefer, Topological Vector Spaces, Graduate Texts in Mathematics, 3, Springer-Verlag, New York–Berlin, 1971 | DOI | MR | Zbl

[22] V.E. Slusarchuk, Stability of Solutions of Difference Equations in a Banach Space, Vyd-vo UDUVH, Rivne, 2003 (Ukrainian)

[23] L.A. Vlasenko, “Evolutionary Models with Implicit and Degenerate Differential Equations”, Sistemnyie Technologii, Dnepropetrovsk, 2006 (Russian)