On dynamical behavior of the $p$-adic $\lambda$-Ising model on Cayley tree
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 321-335 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper, we continue to study some features of the mixed type $p$-adic $\lambda$-Ising model which was studied in [MD17-1]. In that study, the existence of the $p$-adic Gibbs measures and phase transitions were investigated for the model on the Cayley tree of order two. In the current paper, we study the dynamical behavior of the fixed points which have been found in [MD17-1]. As the main result, we proved that the fixed point $u_0$ is an attractor and the other fixed points $u_{1,2}$ are repellent fixed points for the mixed type $p$-adic $\lambda$-Ising model. In addition, the size of basin of attractor for the fixed point $u_0$ is described.
@article{JMAG_2019_15_3_a1,
     author = {Mutlay Dogan},
     title = {On dynamical behavior of the $p$-adic $\lambda${-Ising} model on {Cayley} tree},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {321--335},
     year = {2019},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a1/}
}
TY  - JOUR
AU  - Mutlay Dogan
TI  - On dynamical behavior of the $p$-adic $\lambda$-Ising model on Cayley tree
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2019
SP  - 321
EP  - 335
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a1/
LA  - en
ID  - JMAG_2019_15_3_a1
ER  - 
%0 Journal Article
%A Mutlay Dogan
%T On dynamical behavior of the $p$-adic $\lambda$-Ising model on Cayley tree
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2019
%P 321-335
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a1/
%G en
%F JMAG_2019_15_3_a1
Mutlay Dogan. On dynamical behavior of the $p$-adic $\lambda$-Ising model on Cayley tree. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 321-335. http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a1/

[1] R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982 | MR | Zbl

[2] S. De Smedt, A. Khrennikov, “A $p$-adic behavior of dynamical systems”, Rev. Mat. Complut., 12 (1999), 301–323 | MR | Zbl

[3] M. Dogan, “Phase transition of the mixed type $p$-adic $\lambda$-Ising model on the Cayley tree”, p-Adic Numbers Ultrametric Anal. Appl., 10:4 (2018), 276–286 | DOI | MR | Zbl

[4] N.N. Ganikhodjaev, F.M. Mukhamedov, U.A. Rozikov, “Phase transitions of the Ising model on $\mathbb{Z}$ in the $p$-adic number field”, Uzbek. Mat. Zh., 4 (1998), 23–29 (Russian) | MR

[5] H.O. Georgii, Gibbs Measures and Phase Transitions, De Gruyter Studies in Mathematics, 9, Walter de Gruyter Co., Berlin, 1988 | MR

[6] M. Khamraev, F.M. Mukhamedov, U.A. Rozikov, “On uniqueness of Gibbs measure for $p$-adic $\lambda$-model on the Cayley tree”, Lett. Math. Phys., 70 (2004), 17–28 | DOI | MR | Zbl

[7] A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Mathematics and its Applications, 427, Kluwer Academic Publishers, Dordrecht, 1997 | MR | Zbl

[8] A.Yu. Khrennikov, S. Ludkovsky, “Stochastic processes on non-Archimedean spaces with values in non-Archimedean fields”, Markov Process. Related Fields, 9 (2003), 131–162 | MR | Zbl

[9] N. Koblitz, $p$-Adic Numbers, $p$-Adic Analysis and Zeta-Function, Graduate Texts in Mathematics, 58, Springer-Verlag, New York–Heidelberg, 1977 | DOI | MR

[10] J. Lubin, “Non-Archimedean dynamical systems”, Compositio Math Math., 94 (1994), 321–346 | MR | Zbl

[11] F. Mukhamedov, “On factor associated with the unordered phase of $\lambda$-model on a Cayley tree”, Rep. Math. Phys., 53 (2004), 1–18 | DOI | MR | Zbl

[12] F. Mukhamedov, “A dynamical system appoach to phase transitions $p$-adic Potts model on the Cayley tree of order two”, Rep. Math. Phys., 70 (2012), 385–406 | DOI | MR | Zbl

[13] F. Mukhamedov, “On dynamical systems and phase transitions for $q+1$-state $p$-adic Potts model on the Cayley tree”, Math. Phys. Anal. Geom., 16 (2013), 49–87 | DOI | MR | Zbl

[14] F. Mukhamedov, “Recurrence equations over trees in a non-Archimedean context”, $p$-Adic Numbers Ultrametric Anal. Appl., 6 (2014), 310–317 | DOI | MR | Zbl

[15] F. Mukhamedov, H. Akin, “On non-Archimedean recurrence equations and their applications”, J. Math. Anal. Appl., 423 (2015), 1203–1218 | DOI | MR | Zbl

[16] F. Mukhamedov, M. Dogan, H. Akin, “On chaotic behaviour of the $p$-adic generalized Ising mapping and its application”, J. Difference Equ. Appl., 23 (2017), 1542–1561 | MR | Zbl

[17] F. Mukhamedov, U.A. Rozikov, “On rational $p$-adic dynamical systems”, Methods of Funct. Anal. and Topology, 10 (2004), 21–31 | MR | Zbl

[18] F. Mukhamedov, M. Saburov, O. Khakimov, “On $p$-adic Ising–Vannimenus model on an arbitraray order Cayley tree”, J. Stat. Mech. Theory Exp., 2015, no. 5, P05032 | DOI | MR | Zbl

[19] M. Ostilli, “Cayley trees and Bethe lattices: A concise analysis for mathematicians and physicists”, Phys. A, 391 (2012), 3417–3423 | DOI | MR

[20] U.A. Rozikov, “Description of limit Gibbs measures for $\lambda$-models on the Bethe lattice”, Siberian Math. J., 39 (1998), 373–380 | DOI | MR | Zbl

[21] U.A. Rozikov, Gibbs Measures on Cayley Trees, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013 | MR | Zbl

[22] M. Saburov, M.A. Khameini, “Quadratic equations over $p$-adic fields and their applications in statistical mechanics”, ScienceAsia, 41 (2015), 209–215 | DOI

[23] A.N. Shiryaev, Probability, Nauka, M., 1980 (Russian) | MR | Zbl