@article{JMAG_2019_15_3_a0,
author = {Uday Chand De and Krishanu Mandal},
title = {Ricci solitons and gradient {Ricci} solitons on $N(k)$-paracontact manifolds},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {307--320},
year = {2019},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a0/}
}
TY - JOUR AU - Uday Chand De AU - Krishanu Mandal TI - Ricci solitons and gradient Ricci solitons on $N(k)$-paracontact manifolds JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2019 SP - 307 EP - 320 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a0/ LA - en ID - JMAG_2019_15_3_a0 ER -
Uday Chand De; Krishanu Mandal. Ricci solitons and gradient Ricci solitons on $N(k)$-paracontact manifolds. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 307-320. http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a0/
[1] C.L. Bejan, M. Crasmareanu, “Second order parallel tensors and Ricci solitons in $3$-dimensional normal paracontact geometry”, Ann. Global Anal. Geom., 46 (2014), 117–127 | DOI | MR | Zbl
[2] D.E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes on Mathematics, 509, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl
[3] D.E. Blair, T. Koufogiorgos, B.J. Papantoniou, “Contact metric manifolds satisfying a nullity condition”, Israel J. Math., 91 (1995), 189–214 | DOI | MR | Zbl
[4] C. Calin, M. Crasmareanu, “From the Eisenhart problem to Ricci solitons in $f$-Kenmotsu manifolds”, Bull. Malays. Math. Sci. Soc., 33 (2010), 361–368 | MR | Zbl
[5] G. Calvaruso, “Homogeneous paracontact metric three-manifolds”, Illinois J. Math., 55 (2011), 697–718 | DOI | MR | Zbl
[6] B. Cappelletti-Montano, I. Küpeli Erken, C. Murathan, “Nullity conditions in paracontact geometry”, Diff. Geom. Appl., 30 (2012), 665–693 | DOI | MR | Zbl
[7] B. Cappelletti-Montano, L. Di Terlizzi, “Geometric structures associated to a contact metric $(k,\mu)$-space”, Pacific J. Math., 246 (2010), 257–292 | DOI | MR | Zbl
[8] J.T. Cho, “Notes on contact Ricci solitons”, Proc. Edinb. Math. Soc., 54 (2011), 47–53 | DOI | MR | Zbl
[9] J.T. Cho, “Ricci solitons in almost contact geometry”, Proc. Seventeenth Int. Workshop on Diff. Geom., 2013, 85–95 | MR | Zbl
[10] B. Chow, D. Knopf, The Ricci flow: An introduction, Mathematical surveys and Monographs, 110, Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl
[11] U.C. De, Y. Matsuyama, “Ricci solitons and gradient Ricci solitons in a Kenmotsu manifold”, Southeast Asian Bull. Math., 37 (2013), 691–697 | MR | Zbl
[12] S. Deshmukh, “Jacobi-type vector fields on Ricci solitons”, Bull. Math. Soc. Sci. Math. Roumanie, 55(103) (2012), 41–50 | MR | Zbl
[13] S. Deshmukh, H. Alodan, H. Al-Sodais, “A note on Ricci solitons”, Balkan J. Geom. Appl., 16 (2011), 48–55 | MR | Zbl
[14] D. Friedan, “Non linear models in $2+\epsilon$ dimensions”, Ann. Phys., 163 (1985), 318–410 | DOI | MR
[15] A. Ghosh, “An $\eta$-Einstein Kenmotsu metric as a Ricci soliton”, Publ. Math. Debrecen, 82 (2013), 591–598 | DOI | MR | Zbl
[16] R.S. Hamilton, “The Ricci flow on surfaces”, Mathematics and general relativity (Santa Cruz, CA, 1986), Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988, 237–262 | DOI | MR
[17] T. Ivey, “Ricci solitons on compact $3$-manifolds”, Diff. Geom. Appl., 3 (1993), 301–307 | DOI | MR | Zbl
[18] S. Kaneyuki, F.L. Williams, “Almost paracontact and parahodge structures on manifolds”, Nagoya Math. J., 99 (1985), 173–187 | DOI | MR | Zbl
[19] V. Martin-Molina, “Paracontact metric manifolds without a contact metric counterpart”, Taiwanese J. Math., 19 (2015), 175–191 | DOI | MR | Zbl
[20] V. Martin-Molina, “Local classification and examples of an important class of paracontact metric manifolds”, Filomat, 29 (2015), 507–515 | DOI | MR | Zbl
[21] G. Nakova, S. Zamkovoy, Almost paracontact manifolds, arXiv: 0806.3859v2
[22] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv: /math/0211159
[23] D.G. Prakasha, K.K. Mirji, “On $\phi$-symmetric $N(k)$-paracontact metric manifolds”, J. Math., 2015, 728298 | MR | Zbl
[24] R. Sharma, “Certain results on $K$-contact and $(k,\mu)$-contact manifolds”, J. Geom., 89 (2008), 138–147 | DOI | MR | Zbl
[25] M. Turan, U.C. De, A. Yildiz, “Ricci solitons and gradient Ricci solitons in three-dimensional trans-Sasakian manifolds”, Filomat, 26 (2012), 363–370 | DOI | MR | Zbl
[26] Y. Wang, X. Liu, “Ricci solitons on three-dimensional $\eta$-Einstein almost Kenmotsu manifolds”, Taiwanese J. Math., 19 (2015), 91–100 | MR | Zbl
[27] K. Yano, Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970 | MR | Zbl
[28] A. Yildiz, U.C. De, M. Turan, “On $3$-dimensional $f$-Kenmotsu manifolds and Ricci solitons”, Ukrainian Math. J., 65 (2013), 684–693 | DOI | MR | Zbl
[29] S. Zamkovoy, “Canonical connections on paracontact manifolds”, Ann. Global Anal. Geom., 36 (2009), 37–60 | DOI | MR | Zbl
[30] S. Zamkovoy, V. Tzanov, “Non-existence of flat paracontact metric structures in dimension greater than or equal to five”, Annuaire Univ. Sofia Fac. Math. Inform., 100 (2011), 27–34 | MR