Ricci solitons and gradient Ricci solitons on $N(k)$-paracontact manifolds
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 307-320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An $\eta$-Einstein paracontact manifold $M$ admits a Ricci soliton $(g,\xi)$ if and only if $M$ is a $K$-paracontact Einstein manifold provided one of the associated scalars $\alpha$ or $\beta$ is constant. Also we prove the non-existence of Ricci soliton in an $N(k)$-paracontact metric manifold $M$ whose potential vector field is the Reeb vector field $\xi$. Moreover, if the metric $g$ of an $N(k)$-paracontact metric manifold $M^{2n+1}$ is a gradient Ricci soliton, then either the manifold is locally isometric to a product of a flat $(n+1)$-dimensional manifold and an $n$-dimensional manifold of negative constant curvature equal to $-4$, or $M^{2n+1}$ is an Einstein manifold. Finally, an illustrative example is given.
@article{JMAG_2019_15_3_a0,
     author = {Uday Chand De and Krishanu Mandal},
     title = {Ricci solitons and gradient {Ricci} solitons on $N(k)$-paracontact manifolds},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {307--320},
     year = {2019},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a0/}
}
TY  - JOUR
AU  - Uday Chand De
AU  - Krishanu Mandal
TI  - Ricci solitons and gradient Ricci solitons on $N(k)$-paracontact manifolds
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2019
SP  - 307
EP  - 320
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a0/
LA  - en
ID  - JMAG_2019_15_3_a0
ER  - 
%0 Journal Article
%A Uday Chand De
%A Krishanu Mandal
%T Ricci solitons and gradient Ricci solitons on $N(k)$-paracontact manifolds
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2019
%P 307-320
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a0/
%G en
%F JMAG_2019_15_3_a0
Uday Chand De; Krishanu Mandal. Ricci solitons and gradient Ricci solitons on $N(k)$-paracontact manifolds. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 3, pp. 307-320. http://geodesic.mathdoc.fr/item/JMAG_2019_15_3_a0/

[1] C.L. Bejan, M. Crasmareanu, “Second order parallel tensors and Ricci solitons in $3$-dimensional normal paracontact geometry”, Ann. Global Anal. Geom., 46 (2014), 117–127 | DOI | MR | Zbl

[2] D.E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes on Mathematics, 509, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl

[3] D.E. Blair, T. Koufogiorgos, B.J. Papantoniou, “Contact metric manifolds satisfying a nullity condition”, Israel J. Math., 91 (1995), 189–214 | DOI | MR | Zbl

[4] C. Calin, M. Crasmareanu, “From the Eisenhart problem to Ricci solitons in $f$-Kenmotsu manifolds”, Bull. Malays. Math. Sci. Soc., 33 (2010), 361–368 | MR | Zbl

[5] G. Calvaruso, “Homogeneous paracontact metric three-manifolds”, Illinois J. Math., 55 (2011), 697–718 | DOI | MR | Zbl

[6] B. Cappelletti-Montano, I. Küpeli Erken, C. Murathan, “Nullity conditions in paracontact geometry”, Diff. Geom. Appl., 30 (2012), 665–693 | DOI | MR | Zbl

[7] B. Cappelletti-Montano, L. Di Terlizzi, “Geometric structures associated to a contact metric $(k,\mu)$-space”, Pacific J. Math., 246 (2010), 257–292 | DOI | MR | Zbl

[8] J.T. Cho, “Notes on contact Ricci solitons”, Proc. Edinb. Math. Soc., 54 (2011), 47–53 | DOI | MR | Zbl

[9] J.T. Cho, “Ricci solitons in almost contact geometry”, Proc. Seventeenth Int. Workshop on Diff. Geom., 2013, 85–95 | MR | Zbl

[10] B. Chow, D. Knopf, The Ricci flow: An introduction, Mathematical surveys and Monographs, 110, Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl

[11] U.C. De, Y. Matsuyama, “Ricci solitons and gradient Ricci solitons in a Kenmotsu manifold”, Southeast Asian Bull. Math., 37 (2013), 691–697 | MR | Zbl

[12] S. Deshmukh, “Jacobi-type vector fields on Ricci solitons”, Bull. Math. Soc. Sci. Math. Roumanie, 55(103) (2012), 41–50 | MR | Zbl

[13] S. Deshmukh, H. Alodan, H. Al-Sodais, “A note on Ricci solitons”, Balkan J. Geom. Appl., 16 (2011), 48–55 | MR | Zbl

[14] D. Friedan, “Non linear models in $2+\epsilon$ dimensions”, Ann. Phys., 163 (1985), 318–410 | DOI | MR

[15] A. Ghosh, “An $\eta$-Einstein Kenmotsu metric as a Ricci soliton”, Publ. Math. Debrecen, 82 (2013), 591–598 | DOI | MR | Zbl

[16] R.S. Hamilton, “The Ricci flow on surfaces”, Mathematics and general relativity (Santa Cruz, CA, 1986), Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988, 237–262 | DOI | MR

[17] T. Ivey, “Ricci solitons on compact $3$-manifolds”, Diff. Geom. Appl., 3 (1993), 301–307 | DOI | MR | Zbl

[18] S. Kaneyuki, F.L. Williams, “Almost paracontact and parahodge structures on manifolds”, Nagoya Math. J., 99 (1985), 173–187 | DOI | MR | Zbl

[19] V. Martin-Molina, “Paracontact metric manifolds without a contact metric counterpart”, Taiwanese J. Math., 19 (2015), 175–191 | DOI | MR | Zbl

[20] V. Martin-Molina, “Local classification and examples of an important class of paracontact metric manifolds”, Filomat, 29 (2015), 507–515 | DOI | MR | Zbl

[21] G. Nakova, S. Zamkovoy, Almost paracontact manifolds, arXiv: 0806.3859v2

[22] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv: /math/0211159

[23] D.G. Prakasha, K.K. Mirji, “On $\phi$-symmetric $N(k)$-paracontact metric manifolds”, J. Math., 2015, 728298 | MR | Zbl

[24] R. Sharma, “Certain results on $K$-contact and $(k,\mu)$-contact manifolds”, J. Geom., 89 (2008), 138–147 | DOI | MR | Zbl

[25] M. Turan, U.C. De, A. Yildiz, “Ricci solitons and gradient Ricci solitons in three-dimensional trans-Sasakian manifolds”, Filomat, 26 (2012), 363–370 | DOI | MR | Zbl

[26] Y. Wang, X. Liu, “Ricci solitons on three-dimensional $\eta$-Einstein almost Kenmotsu manifolds”, Taiwanese J. Math., 19 (2015), 91–100 | MR | Zbl

[27] K. Yano, Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970 | MR | Zbl

[28] A. Yildiz, U.C. De, M. Turan, “On $3$-dimensional $f$-Kenmotsu manifolds and Ricci solitons”, Ukrainian Math. J., 65 (2013), 684–693 | DOI | MR | Zbl

[29] S. Zamkovoy, “Canonical connections on paracontact manifolds”, Ann. Global Anal. Geom., 36 (2009), 37–60 | DOI | MR | Zbl

[30] S. Zamkovoy, V. Tzanov, “Non-existence of flat paracontact metric structures in dimension greater than or equal to five”, Annuaire Univ. Sofia Fac. Math. Inform., 100 (2011), 27–34 | MR