Tubular surfaces with Galilean Darboux frame in $\mathbf{G}_{3}$
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 2, pp. 278-287 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main point of the research is to study a new approach for defining the tubular surfaces with the Galilean Darboux frame in 3-dimensional Galilean space. Also, we obtain the Gaussian and mean curvatures and derive some parametrizations for a special curve to lie on tubular surfaces with the Galilean Darboux frame.
@article{JMAG_2019_15_2_a7,
     author = {Dae Won Yoon and Z\"uhal K\"u\c{c}\"ukarslan Y\"uzba\c{s}i},
     title = {Tubular surfaces with {Galilean} {Darboux} frame in $\mathbf{G}_{3}$},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {278--287},
     year = {2019},
     volume = {15},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a7/}
}
TY  - JOUR
AU  - Dae Won Yoon
AU  - Zühal Küçükarslan Yüzbaşi
TI  - Tubular surfaces with Galilean Darboux frame in $\mathbf{G}_{3}$
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2019
SP  - 278
EP  - 287
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a7/
LA  - en
ID  - JMAG_2019_15_2_a7
ER  - 
%0 Journal Article
%A Dae Won Yoon
%A Zühal Küçükarslan Yüzbaşi
%T Tubular surfaces with Galilean Darboux frame in $\mathbf{G}_{3}$
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2019
%P 278-287
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a7/
%G en
%F JMAG_2019_15_2_a7
Dae Won Yoon; Zühal Küçükarslan Yüzbaşi. Tubular surfaces with Galilean Darboux frame in $\mathbf{G}_{3}$. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 2, pp. 278-287. http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a7/

[1] A.T. Ali, “Position vectors of curves in the Galilean space $G_3$”, Mat. Vesnik, 64:3 (2012), 200–210 | MR | Zbl

[2] A. Artykbaev, “Reconstruction of convex surfaces for the extrinsic curvature in a Galileian space”, Mat. Sb. (N.S.), 119(161):2 (1982), 204–224 (Russian) | MR | Zbl

[3] M. Dede, “Tubular surfaces in Galilean space”, Math. Commun., 18:1 (2013), 209–217 | MR | Zbl

[4] M. Dede, C. Ekici, W. Goemans, Y. Ünlütürk, “Twisted surfaces with vanishing curvature in Galilean 3-space”, Int. J. Geom. Methods Mod. Phys., 15:1 (2018), 1850001 | DOI | MR | Zbl

[5] F. Doğan, Y. Yaylı, “Tubes with Darboux frame”, Int. J. Contemp. Math. Sci., 7 (2012), 751–758 | MR | Zbl

[6] F. Doğan, Y. Yaylı, “On the curvatures of Tubular surface with Bishop frame”, Commun. Fac. Sci. Univ. Ank. Ser. A, 60 (2011), 59–69 | MR | Zbl

[7] M.K. Karacan, Y. Tuncer, “Tubular surfaces of Weingarten types in Galilean and pseudo-Galilean”, Bull. Math. Anal. Appl., 5 (2013), 87–100 | MR | Zbl

[8] S. Kızıltuğ, Y. Yaylı, “Timelike tubes with Darboux frame in Minkowski 3-space”, Int. J. Phys. Sci., 8 (2013), 31–36 | DOI

[9] J. Lang, O. Röschel, “Developable $(1, n)$-Bezier surfaces”, Comput. Aided Geom. Design, 9 (1992), 291–298 | DOI | MR | Zbl

[10] T. Maekawa, M. N. Patrikalakis, T. Sakkalis, G. Yu, “Analysis and applications of pipe surfaces”, Comput. Aided Geom. Design, 15 (1998), 437–458 | DOI | MR | Zbl

[11] E. Molnár, “The projective interpretation of the eight 3-dimensional homogeneous geometries”, Beiträge Algebra Geom., 38 (1997), 261–288 | MR | Zbl

[12] A.O. Öğrenmis, H. Öztekin, M. Ergüt, “Bertrand curves in Galilean space and their characterizations”, Kragujevac J. Math., 32 (2009), 139–147 | MR

[13] B.J. Pavković, I. Kamenarović, “The Equiform differential geometry of curves in the Galilean space $G_3$”, Glas. Mat. Ser. III, 22:42 (1987), 449–457 | MR | Zbl

[14] J.S. Ro, D.W. Yoon, “Tubes of Weingarten types in a Euclidean 3-space”, J. Chungcheong Math. Soci., 22:3 (2009), 359–366

[15] B.A. Rosenfeld, A history of Non-Euclidean Geometry: Evolution of the Concept of a Geometric Space, Springer Science $+$ Business Media, New York, 2012 | MR

[16] O. Röschel, Die Geometrie des Galileischen Raumes, Habilitationsschrift, Bericht der Mathematisch-Statistischen Sektion in der Forschungs-Gesellschaft Joanneum, 256, Leoben, 1984 | MR

[17] Z. Milin-Šipuš, “Ruled Weingarten surfaces in Galilean space”, Period. Math. Hungar, 56:2 (2008), 213–225 | DOI | MR | Zbl

[18] Z. Milin-Šipuš, B. Divjak, “Surfaces of constant curvature in the pseudo-Galilean space”, Int. J. Math. Math. Sci., 2012 (2012), 375264 | MR | Zbl

[19] T. Şahin, “Intrinsic equations for a generalized relaxed elastic line on an oriented surface in the Galilean space”, Acta Math. Sci. Ser. B, 33 (2013), 701–711 | DOI | MR

[20] I.M. Yaglom, A Simple Non-Euclidean Geometry and its Physical Basis, Springer-Verlag, New York–Heidelberg, 1979 | MR | Zbl

[21] D.W. Yoon, “On the Gauss map of tubular surfaces in Galilean 3-space”, Int. J. Math. Anal. (N.S.), 8:45 (2014), 2229–2238 | DOI | MR

[22] Z.K. Yüzbaş\i, M. Bektaş, “On the construction of a surface family with common geodesic in Galilean space $G_3$”, Open Phys., 14 (2016), 360–363 | DOI | MR