Translation-invariant Gibbs measures for the Blum–Kapel model on a Cayley tree
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 2, pp. 239-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, translation-invariant Gibbs measures for the Blum–Kapel model on a Cayley tree of order $k$ are considered. An approximate critical temperature $T_{cr}$ is found such that for $T\geq T_{cr}$ there exists a unique translation-invariant Gibbs measure and for $0 there are exactly three translation-invariant Gibbs measures. In addition, the problem of (not) extremality for the unique Gibbs measure is studied.
@article{JMAG_2019_15_2_a5,
     author = {Nosir Khatamov and Rustam Khakimov},
     title = {Translation-invariant {Gibbs} measures for the {Blum{\textendash}Kapel} model on a {Cayley} tree},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {239--255},
     year = {2019},
     volume = {15},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a5/}
}
TY  - JOUR
AU  - Nosir Khatamov
AU  - Rustam Khakimov
TI  - Translation-invariant Gibbs measures for the Blum–Kapel model on a Cayley tree
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2019
SP  - 239
EP  - 255
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a5/
LA  - en
ID  - JMAG_2019_15_2_a5
ER  - 
%0 Journal Article
%A Nosir Khatamov
%A Rustam Khakimov
%T Translation-invariant Gibbs measures for the Blum–Kapel model on a Cayley tree
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2019
%P 239-255
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a5/
%G en
%F JMAG_2019_15_2_a5
Nosir Khatamov; Rustam Khakimov. Translation-invariant Gibbs measures for the Blum–Kapel model on a Cayley tree. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 2, pp. 239-255. http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a5/

[1] E.N. Cirillo, E. Olivieri, “Metastabilty and nucleation for the Blume–Capel model. Different mechanisms of transition”, J. Statist. Phys., 83:3–4 (1996), 473–554 | DOI | MR | Zbl

[2] M. Formentin, C. Külske, “A symmetric entropy bound on the non-reconstruction regime of Markov chains on Galton–Watson trees”, Electron. Commun. Probab., 14 (2009), 587–596 | MR | Zbl

[3] Theoret. and Math. Phys., 111 (1997), 480–486 | DOI | DOI | MR | Zbl

[4] H.-O. Georgii, Gibbs Measures and Phase Transitions, De Gruyter Studies in Mathematics, 9, Walter de Gruyter Co., Berlin, 1988 | MR

[5] O. Hryniv, R. Kotecký, “Surfase tension and the Orustein–Zernike behavior for the 2D Blume–Capel model”, J. Statist. Phys., 106 (2002), 431–476 | DOI | MR | Zbl

[6] H. Kesten, B.P. Stigum, “Additional limit theorem for indecomposable multi-dimensional Galton–Watson processes”, Ann. Math. Statist., 37 (1966), 1463–1481 | DOI | MR | Zbl

[7] Theoret. and Math. Phys., 180 (2014), 827–834 | DOI | DOI | MR | MR | Zbl

[8] Theoret. and Math. Phys., 180 (2014), 1030–1039 | DOI | DOI | MR | Zbl

[9] C. Külske, U.A. Rozikov, “Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree”, Random Structures and Algorithms, 50 (2017), 636–678 | DOI | MR | Zbl

[10] C. Külske, U.A. Rozikov, R.M. Khakimov, “Description of all translation-invariant splitting Gibbs measures for the Potts model on a Cayley tree”, J. Stat. Phys., 156 (2014), 189–200 | DOI | MR | Zbl

[11] F. Martinelli, A. Sinclair, D. Weitz, “Fast mixing for independent sets, coloring and other models on trees”, Random Structures and Algoritms, 31 (2007), 134–172 | DOI | MR | Zbl

[12] V.V. Prasolov, Polynomials, Algorithms and Computation in Mathematics, 11, Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl

[13] C.J. Preston, Gibbs States on Countable Sets, Cambridge Tracts Math., 68, Cambridge Univ. Press, London-New York, 1974 | MR | Zbl

[14] U.A. Rozikov, Gibbs Measures on Cayley Trees, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013 | MR | Zbl

[15] U.A. Rozikov, R.M. Khakimov, “Gibbs measures for the fertile three-state hard core models on a Cayley tree”, Queueing Syst., 81:1 (2015), 49–69 | DOI | MR | Zbl

[16] International Series in Natural Philosophy, 108, Pergamon Press, Oxford-Elmsford, N.Y., 1982 | MR | Zbl

[17] P.E. Theodorakis, N.J. Fytas, “Monte Carlo study of the triangular Blume–Capel model under bond randomness”, Phys. Rev. E, 86 (2012), 011140 | DOI