Inverse scattering problems with the potential known on an interior subinterval
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 2, pp. 225-238 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The inverse scattering problem for one-dimensional Schrödinger operators on the line is considered when the potential is real valued and integrable and has a finite first moment. It is shown that the potential on the line is uniquely determined by the mixed scattering data consisting of the scattering matrix, known potential on a finite interval, and one nodal point on the known interval for each eigenfunction.
@article{JMAG_2019_15_2_a4,
     author = {Yongxia Guo and Guangsheng Wei},
     title = {Inverse scattering problems with the potential known on an interior subinterval},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {225--238},
     year = {2019},
     volume = {15},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a4/}
}
TY  - JOUR
AU  - Yongxia Guo
AU  - Guangsheng Wei
TI  - Inverse scattering problems with the potential known on an interior subinterval
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2019
SP  - 225
EP  - 238
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a4/
LA  - en
ID  - JMAG_2019_15_2_a4
ER  - 
%0 Journal Article
%A Yongxia Guo
%A Guangsheng Wei
%T Inverse scattering problems with the potential known on an interior subinterval
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2019
%P 225-238
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a4/
%G en
%F JMAG_2019_15_2_a4
Yongxia Guo; Guangsheng Wei. Inverse scattering problems with the potential known on an interior subinterval. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 2, pp. 225-238. http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a4/

[1] T. Aktosun, M. Klaus, C. van der Mee, “On the Riemann–Hilbert problem for the one-dimensional Schrö dinger equation”, J. Math. Phys., 34 (1993), 2651–2690 | DOI | MR | Zbl

[2] T. Aktosun, “Bound-states and inverse scattering for the Schrödinger equation in one dimension”, J. Math. Phys., 35 (1994), 6231–6236 | DOI | MR | Zbl

[3] T. Aktosun, “Inverse Schrödinger scattering on the line with partial knowledge of the potential”, SIAM J. Appl. Math., 56 (1996), 219–231 | DOI | MR | Zbl

[4] T. Aktosun, R. Weder, “Inverse scattering with partial knowledge of the potential”, J. Math. Anal. Appl., 270 (2002), 247–266 | DOI | MR | Zbl

[5] M. Braun, S. Sofianos, R. Lipperheide, “One-dimensional Marchenko inversion in the presence of bound states”, Inverse Problems, 11 (1995), L1–L3 | DOI | MR | Zbl

[6] X. Chen, Y.H. Cheng, C.K. Law, “Reconstructing potentials from zeros of one eigenfunction”, Trans. Amer. Math. Soc., 363 (2011), 4831–4851 | DOI | MR | Zbl

[7] P. Deift, E. Trubowitz, “Inverse scattering on the line”, Comm. Partial Differential Equations, 32 (1979), 121–251 | MR | Zbl

[8] I.M. Gel'fand, B.M. Levitan, “On the determination of a differential equation from its spectral function”, Izvestiya Akad. Nauk SSSR. Ser. Mat., 15 (1951), 309–360 (Russian) | MR | Zbl

[9] B. Grebert, R. Weder, “Reconstruction of a potential on the line that is a priori known on the half line”, SIAM J. Appl. Math., 55 (1995), 242–254 | DOI | MR | Zbl

[10] O.H. Hald, J.R. McLaughlin, “Inverse problems: recovery of BV coefficients from nodes”, Inverse Problems, 14 (1998), 245–273 | DOI | MR | Zbl

[11] O.H. Hald, J.R. McLaughlin, “Solutions of inverse nodal problems”, Inverse Problems, 5 (1989), 307–347 | DOI | MR | Zbl

[12] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer-Verlag, New York, 1996 | MR | Zbl

[13] B.M. Levitan, “The determination of a Sturm–Liouville operator from one or from two spectra”, Izv. Akad. Nauk SSSR Ser. Mat., 42 (1978), 185–199 ; 215–216 (Russian) | MR | Zbl

[14] B.M. Levitan, Inverse Sturm–Liouville problem, VNU Science Press, Utrecht, 1987 | MR

[15] V.A. Marchenko, Sturm–Liouville Operator and Applications, Birkhauser, Basel, 1986 | MR

[16] J.R. McLaughlin, “Inverse spectral theory using nodal points as data-a uniqueness result”, J. Differential Equation, 73 (1988), 354–362 | DOI | MR | Zbl

[17] N.N. Novikova, V.M. Markushevich, “Uniqueness of the solution of the one-dimensional problem of scattering for potentials located on the positive semiaxis”, Comput. Seismol., 18 (1987), 164–172

[18] D.L. Pursey, T. Weber, “Formulations of certain Gelfand-Levitan and Marchenko equations”, Phys. Rev. A, 50 (1994), 325–347 | DOI | MR

[19] W.T. Reid, Sturmian Theory for Ordinary Differential Equations, Springer-Verlag, New York, 1980 | MR | Zbl

[20] W. Rundell, P. Sacks, “On the determination of potentials without bound state data”, J. Comput. Appl. Math., 55 (1994), 325–347 | DOI | MR | Zbl

[21] P. Sacks, “Reconstruction of steplike potentials”, Wave Motion, 18 (1993), 21–30 | DOI | MR | Zbl

[22] G. Wei, H.K. Xu, “On the missing bound state data of inverse spectral-scattering problems on the half-line”, Inverse Probl. Imaging, 9 (2015), 239–255 | DOI | MR | Zbl