@article{JMAG_2019_15_2_a4,
author = {Yongxia Guo and Guangsheng Wei},
title = {Inverse scattering problems with the potential known on an interior subinterval},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {225--238},
year = {2019},
volume = {15},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a4/}
}
TY - JOUR AU - Yongxia Guo AU - Guangsheng Wei TI - Inverse scattering problems with the potential known on an interior subinterval JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2019 SP - 225 EP - 238 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a4/ LA - en ID - JMAG_2019_15_2_a4 ER -
Yongxia Guo; Guangsheng Wei. Inverse scattering problems with the potential known on an interior subinterval. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 2, pp. 225-238. http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a4/
[1] T. Aktosun, M. Klaus, C. van der Mee, “On the Riemann–Hilbert problem for the one-dimensional Schrö dinger equation”, J. Math. Phys., 34 (1993), 2651–2690 | DOI | MR | Zbl
[2] T. Aktosun, “Bound-states and inverse scattering for the Schrödinger equation in one dimension”, J. Math. Phys., 35 (1994), 6231–6236 | DOI | MR | Zbl
[3] T. Aktosun, “Inverse Schrödinger scattering on the line with partial knowledge of the potential”, SIAM J. Appl. Math., 56 (1996), 219–231 | DOI | MR | Zbl
[4] T. Aktosun, R. Weder, “Inverse scattering with partial knowledge of the potential”, J. Math. Anal. Appl., 270 (2002), 247–266 | DOI | MR | Zbl
[5] M. Braun, S. Sofianos, R. Lipperheide, “One-dimensional Marchenko inversion in the presence of bound states”, Inverse Problems, 11 (1995), L1–L3 | DOI | MR | Zbl
[6] X. Chen, Y.H. Cheng, C.K. Law, “Reconstructing potentials from zeros of one eigenfunction”, Trans. Amer. Math. Soc., 363 (2011), 4831–4851 | DOI | MR | Zbl
[7] P. Deift, E. Trubowitz, “Inverse scattering on the line”, Comm. Partial Differential Equations, 32 (1979), 121–251 | MR | Zbl
[8] I.M. Gel'fand, B.M. Levitan, “On the determination of a differential equation from its spectral function”, Izvestiya Akad. Nauk SSSR. Ser. Mat., 15 (1951), 309–360 (Russian) | MR | Zbl
[9] B. Grebert, R. Weder, “Reconstruction of a potential on the line that is a priori known on the half line”, SIAM J. Appl. Math., 55 (1995), 242–254 | DOI | MR | Zbl
[10] O.H. Hald, J.R. McLaughlin, “Inverse problems: recovery of BV coefficients from nodes”, Inverse Problems, 14 (1998), 245–273 | DOI | MR | Zbl
[11] O.H. Hald, J.R. McLaughlin, “Solutions of inverse nodal problems”, Inverse Problems, 5 (1989), 307–347 | DOI | MR | Zbl
[12] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Springer-Verlag, New York, 1996 | MR | Zbl
[13] B.M. Levitan, “The determination of a Sturm–Liouville operator from one or from two spectra”, Izv. Akad. Nauk SSSR Ser. Mat., 42 (1978), 185–199 ; 215–216 (Russian) | MR | Zbl
[14] B.M. Levitan, Inverse Sturm–Liouville problem, VNU Science Press, Utrecht, 1987 | MR
[15] V.A. Marchenko, Sturm–Liouville Operator and Applications, Birkhauser, Basel, 1986 | MR
[16] J.R. McLaughlin, “Inverse spectral theory using nodal points as data-a uniqueness result”, J. Differential Equation, 73 (1988), 354–362 | DOI | MR | Zbl
[17] N.N. Novikova, V.M. Markushevich, “Uniqueness of the solution of the one-dimensional problem of scattering for potentials located on the positive semiaxis”, Comput. Seismol., 18 (1987), 164–172
[18] D.L. Pursey, T. Weber, “Formulations of certain Gelfand-Levitan and Marchenko equations”, Phys. Rev. A, 50 (1994), 325–347 | DOI | MR
[19] W.T. Reid, Sturmian Theory for Ordinary Differential Equations, Springer-Verlag, New York, 1980 | MR | Zbl
[20] W. Rundell, P. Sacks, “On the determination of potentials without bound state data”, J. Comput. Appl. Math., 55 (1994), 325–347 | DOI | MR | Zbl
[21] P. Sacks, “Reconstruction of steplike potentials”, Wave Motion, 18 (1993), 21–30 | DOI | MR | Zbl
[22] G. Wei, H.K. Xu, “On the missing bound state data of inverse spectral-scattering problems on the half-line”, Inverse Probl. Imaging, 9 (2015), 239–255 | DOI | MR | Zbl