Nonlocal elasticity theory as a continuous limit of 3D networks of pointwise interacting masses
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 2, pp. 203-224 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Small oscillations of an elastic system of point masses (particles) with a nonlocal interaction are considered. The asymptotic behavior of the system is studied when a number of particles tend to infinity and the distances between them and the forces of interaction tend to zero. The first term of the asymptotic is described by the homogenized system of equations, which is a nonlocal model of oscillations of elastic medium.
@article{JMAG_2019_15_2_a3,
     author = {Mariya Goncharenko and Eugen Khruslov},
     title = {Nonlocal elasticity theory as a continuous limit of {3D} networks of pointwise interacting masses},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {203--224},
     year = {2019},
     volume = {15},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a3/}
}
TY  - JOUR
AU  - Mariya Goncharenko
AU  - Eugen Khruslov
TI  - Nonlocal elasticity theory as a continuous limit of 3D networks of pointwise interacting masses
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2019
SP  - 203
EP  - 224
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a3/
LA  - en
ID  - JMAG_2019_15_2_a3
ER  - 
%0 Journal Article
%A Mariya Goncharenko
%A Eugen Khruslov
%T Nonlocal elasticity theory as a continuous limit of 3D networks of pointwise interacting masses
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2019
%P 203-224
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a3/
%G en
%F JMAG_2019_15_2_a3
Mariya Goncharenko; Eugen Khruslov. Nonlocal elasticity theory as a continuous limit of 3D networks of pointwise interacting masses. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 2, pp. 203-224. http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a3/

[1] E.C. Aifantis, “Gradient effects at macro, micro and nano scales”, J. Mech. Behav. of Mater., 5 (1994), 355–375 | DOI

[2] M. Berezhnyy, L. Berlyand, “Continium limit for three-dimensional mass-spring network and disret Korn's inequality”, J. Mech. Phys. Solids, 54 (2006), 635–669 | DOI | MR | Zbl

[3] M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press, London, 1954 | MR | Zbl

[4] M. Di Paola, G. Failla, M. Zingales, “Physically-based approach to the mechanics of strong non-local elasticity theory”, J. Elasticity, 97:2 (2008), 103–130 | DOI | MR

[5] M. Di Paola, A. Pirrotta, M. Zingales, “Mechanically-based approach to nonlocal elasticity: variational principles”, Int. J. Solids Struct., 47:5 (2010), 539–548 | DOI | Zbl

[6] M. Di Paola, G. Failla, M. Zingales, “The mechanically-based approach to 3D non-local linear elasticity theory: long-range central interactions”, Int. J. Solids Struct., 47 (2010), 2347–2358 | DOI | MR | Zbl

[7] A.C. Eringen, Non-Local Polar Field Models, Academic Press, New York, 1996

[8] A.C. Eringen, “Non-local polar elastic continua”, Int. J. Eng. Sci., 10 (1972), 1–16 | DOI | MR | Zbl

[9] A.C. Eringen, D.G.B. Edelen, “On non-local elasticity”, Int. J. Eng. Sci., 10 (1972), 233–248 | DOI | MR | Zbl

[10] S. Gopalakrishnan, S. Narendar, Wave Propagation in Nanostructures. Nonlocal Continuum Mechanics Formulations, NanoScience and Technology, Springer, Cham, 2013 | DOI | MR

[11] E. Kröner, “Elasticity theory of materials with long range cohesive forces”, Int. J. Solids Struct., 3 (1967), 731–742 | DOI | Zbl

[12] E. Kröner, “The problem of non-locality in the mechanics of solids: review on present status”, Fundamental Aspects of Dislocation Theory, Conference Proceedings, v. II, Nat. Bur. Stand. (U.S.), Spec. Publ., 317, 1970, 729–736

[13] J.A. Krumhansl, “Generalized continuum field representation for lattice vibrations”, Lattice Dynamics, Proceedings of International Conference, Pergamon Press, London, 1963

[14] I.A. Kunin, Elastic Media with Microstructure, v. I, Springer-Verlag, Berlin, 1982 | MR | Zbl

[15] K.M. Liew, Y. Zhang, L.W. Zhang, “Nonlocal elasticity theory for graphene modeling and simulation: prospects and challenges”, J. Model. Mech. and Mater., 1 (2017), 2328–2355

[16] A.I. Markushevich, The Theory of Analytic Functions: a Brief Course, Mir, M., 1983 (Russian) | MR | Zbl

[17] V.A. Marchenko, E.Ya. Khruslov, Homogenization of Partial Differential Equations, Birkhäuser, Boston–Basel–Berlin, 2006 | MR | Zbl

[18] R.D. Mindlin, “Theories of elastic continua and crystal lattice theories”, Mechanics of Generalized Continua, IUTAM Symposia (International Union of Theoretical and Applied Mechanics), Springer, Berlin–Heidelberg, 1968, 312–320

[19] O.A. Oleĭnik , A.S. Shamaev, G.A. Yosifian, Mathematical Problems in Elasticity and Homogenization, Studies in Mathematics and its Applications, 26, North-Holland Publishing Co., Amsterdam, 1992 | MR | Zbl

[20] Translations of Mathematical Monographs, 234, Amer. Math. Soc., Providence, RI, 2007 | MR | Zbl

[21] C. Polizzotto, “Non-local elasticity and related variational principles”, Int. J. Solids Struct., 38 (2001), 7359–7380 | DOI | MR | Zbl

[22] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer-Verlag, Berlin–Heidelberg, 1980 | MR | Zbl

[23] S.A. Silling, “Reformulation of elasticity theory for discontinuities and long-range forces”, J. Mech. Phys. Solids, 48 (2000), 175–209 | DOI | MR | Zbl

[24] V.E. Tarasov, “General lattice model of gradient elasticity”, Mod. Phys. Lett. B, 28:7 (2014), 1450054 | DOI

[25] V.E. Tarasov, “Three-dimensional lattice models with long-range interactions of Grünwald–Letnikov type for fractional generalization of gradient elasticity”, Meccanica, 51 (2016), 125–138 | DOI | MR | Zbl