@article{JMAG_2019_15_2_a3,
author = {Mariya Goncharenko and Eugen Khruslov},
title = {Nonlocal elasticity theory as a continuous limit of {3D} networks of pointwise interacting masses},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {203--224},
year = {2019},
volume = {15},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a3/}
}
TY - JOUR AU - Mariya Goncharenko AU - Eugen Khruslov TI - Nonlocal elasticity theory as a continuous limit of 3D networks of pointwise interacting masses JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2019 SP - 203 EP - 224 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a3/ LA - en ID - JMAG_2019_15_2_a3 ER -
%0 Journal Article %A Mariya Goncharenko %A Eugen Khruslov %T Nonlocal elasticity theory as a continuous limit of 3D networks of pointwise interacting masses %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2019 %P 203-224 %V 15 %N 2 %U http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a3/ %G en %F JMAG_2019_15_2_a3
Mariya Goncharenko; Eugen Khruslov. Nonlocal elasticity theory as a continuous limit of 3D networks of pointwise interacting masses. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 15 (2019) no. 2, pp. 203-224. http://geodesic.mathdoc.fr/item/JMAG_2019_15_2_a3/
[1] E.C. Aifantis, “Gradient effects at macro, micro and nano scales”, J. Mech. Behav. of Mater., 5 (1994), 355–375 | DOI
[2] M. Berezhnyy, L. Berlyand, “Continium limit for three-dimensional mass-spring network and disret Korn's inequality”, J. Mech. Phys. Solids, 54 (2006), 635–669 | DOI | MR | Zbl
[3] M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press, London, 1954 | MR | Zbl
[4] M. Di Paola, G. Failla, M. Zingales, “Physically-based approach to the mechanics of strong non-local elasticity theory”, J. Elasticity, 97:2 (2008), 103–130 | DOI | MR
[5] M. Di Paola, A. Pirrotta, M. Zingales, “Mechanically-based approach to nonlocal elasticity: variational principles”, Int. J. Solids Struct., 47:5 (2010), 539–548 | DOI | Zbl
[6] M. Di Paola, G. Failla, M. Zingales, “The mechanically-based approach to 3D non-local linear elasticity theory: long-range central interactions”, Int. J. Solids Struct., 47 (2010), 2347–2358 | DOI | MR | Zbl
[7] A.C. Eringen, Non-Local Polar Field Models, Academic Press, New York, 1996
[8] A.C. Eringen, “Non-local polar elastic continua”, Int. J. Eng. Sci., 10 (1972), 1–16 | DOI | MR | Zbl
[9] A.C. Eringen, D.G.B. Edelen, “On non-local elasticity”, Int. J. Eng. Sci., 10 (1972), 233–248 | DOI | MR | Zbl
[10] S. Gopalakrishnan, S. Narendar, Wave Propagation in Nanostructures. Nonlocal Continuum Mechanics Formulations, NanoScience and Technology, Springer, Cham, 2013 | DOI | MR
[11] E. Kröner, “Elasticity theory of materials with long range cohesive forces”, Int. J. Solids Struct., 3 (1967), 731–742 | DOI | Zbl
[12] E. Kröner, “The problem of non-locality in the mechanics of solids: review on present status”, Fundamental Aspects of Dislocation Theory, Conference Proceedings, v. II, Nat. Bur. Stand. (U.S.), Spec. Publ., 317, 1970, 729–736
[13] J.A. Krumhansl, “Generalized continuum field representation for lattice vibrations”, Lattice Dynamics, Proceedings of International Conference, Pergamon Press, London, 1963
[14] I.A. Kunin, Elastic Media with Microstructure, v. I, Springer-Verlag, Berlin, 1982 | MR | Zbl
[15] K.M. Liew, Y. Zhang, L.W. Zhang, “Nonlocal elasticity theory for graphene modeling and simulation: prospects and challenges”, J. Model. Mech. and Mater., 1 (2017), 2328–2355
[16] A.I. Markushevich, The Theory of Analytic Functions: a Brief Course, Mir, M., 1983 (Russian) | MR | Zbl
[17] V.A. Marchenko, E.Ya. Khruslov, Homogenization of Partial Differential Equations, Birkhäuser, Boston–Basel–Berlin, 2006 | MR | Zbl
[18] R.D. Mindlin, “Theories of elastic continua and crystal lattice theories”, Mechanics of Generalized Continua, IUTAM Symposia (International Union of Theoretical and Applied Mechanics), Springer, Berlin–Heidelberg, 1968, 312–320
[19] O.A. Oleĭnik , A.S. Shamaev, G.A. Yosifian, Mathematical Problems in Elasticity and Homogenization, Studies in Mathematics and its Applications, 26, North-Holland Publishing Co., Amsterdam, 1992 | MR | Zbl
[20] Translations of Mathematical Monographs, 234, Amer. Math. Soc., Providence, RI, 2007 | MR | Zbl
[21] C. Polizzotto, “Non-local elasticity and related variational principles”, Int. J. Solids Struct., 38 (2001), 7359–7380 | DOI | MR | Zbl
[22] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Springer-Verlag, Berlin–Heidelberg, 1980 | MR | Zbl
[23] S.A. Silling, “Reformulation of elasticity theory for discontinuities and long-range forces”, J. Mech. Phys. Solids, 48 (2000), 175–209 | DOI | MR | Zbl
[24] V.E. Tarasov, “General lattice model of gradient elasticity”, Mod. Phys. Lett. B, 28:7 (2014), 1450054 | DOI
[25] V.E. Tarasov, “Three-dimensional lattice models with long-range interactions of Grünwald–Letnikov type for fractional generalization of gradient elasticity”, Meccanica, 51 (2016), 125–138 | DOI | MR | Zbl